Patents by Inventor Paul Ma

Paul Ma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150376784
    Abstract: A chamber lid assembly includes: a central channel having an upper portion and a lower portion and extending along a central axis; a housing at least partially defining a first and a second annular channel, each fluidly coupled to the central channel; a first plurality of apertures disposed along a horizontal plane through the housing to provide a multi-aperture inlet between the first annular channel and the central channel; a second plurality of apertures disposed along a horizontal plane through the housing to provide a multi-aperture inlet between the second annular channel and the central channel, wherein the first and the second plurality of apertures are angled differently with respect to the central axis so as to induce opposing rotational flow of gases about the central axis; and a tapered bottom surface extending from the lower portion of the central channel to a peripheral portion of the chamber lid assembly.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 31, 2015
    Inventors: Dien-Yeh WU, Paul MA, Guodan WEI, Chun-Teh KAO
  • Patent number: 9051641
    Abstract: Embodiments of the invention provide processes for depositing a cobalt layer on a barrier layer and subsequently depositing a conductive material, such as copper or a copper alloy, thereon. In one embodiment, a method for depositing materials on a substrate surface is provided which includes forming a barrier layer on a substrate, exposing the substrate to dicobalt hexacarbonyl butylacetylene (CCTBA) and hydrogen to form a cobalt layer on the barrier layer during a vapor deposition process (e.g., CVD or ALD), and depositing a conductive material over the cobalt layer. In some examples, the barrier layer and/or the cobalt layer may be exposed to a gas or a reagent during a treatment process, such as a thermal process, an in situ plasma process, or a remote plasma process.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: June 9, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jiang Lu, Hyoung-Chan Ha, Paul Ma, Seshadri Ganguli, Joseph F. Aubuchon, Sang Ho Yu, Murali K. Narasimhan
  • Patent number: 9032906
    Abstract: Embodiments of the invention provide an apparatus configured to form a material during an atomic layer deposition (ALD) process, such as a plasma-enhanced ALD (PE-ALD) process. In one embodiment, a plasma baffle assembly for receiving a process gas within a plasma-enhanced vapor deposition chamber is provided which includes a plasma baffle plate containing an upper surface to receive a process gas and a lower surface to emit the process gas, a plurality of openings configured to flow the process gas from above the upper surface to below the lower surface, wherein each opening is positioned at a predetermined angle of a vertical axis that is perpendicular to the lower surface, and a conical nose cone on the upper surface. In one example, the openings are slots positioned at a predetermined angle to emit the process gas with a circular flow pattern.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: May 19, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Paul Ma, Kavita Shah, Dien-Yeh Wu, Seshadri Ganguli, Christophe Marcadal, Frederick C. Wu, Schubert S. Chu
  • Publication number: 20140248772
    Abstract: Embodiments of the invention provide methods for depositing a material on a substrate within a processing chamber during a vapor deposition process, such as an atomic layer deposition (ALD) process. In one embodiment, a method is provided which includes sequentially exposing the substrate to a first precursor gas and at least a second precursor gas while depositing a material on the substrate during the ALD process, and continuously or periodically exposing the substrate to a treatment gas prior to and/or during the ALD process. The deposition rate of the material being deposited may be controlled by varying the amount of treatment gas exposed to the substrate. In one example, tantalum nitride is deposited on the substrate and the alkylamino metal precursor gas contains a tantalum precursor, such as pentakis(dimethylamino) tantalum (PDMAT), the second precursor gas contains a nitrogen precursor, such as ammonia, and the treatment gas contains dimethylamine (DMA).
    Type: Application
    Filed: May 15, 2014
    Publication date: September 4, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Paul MA, Joseph F. AUBUCHON, Jiang LU, Mei CHANG
  • Patent number: 7850779
    Abstract: Embodiments of the invention provide an apparatus configured to form a material during an atomic layer deposition (ALD) process, such as a plasma-enhanced ALD (PE-ALD) process. In one embodiment, a lid assembly for conducting a vapor deposition process within a process chamber is provided which includes an insulation cap and a plasma screen. In one example, the insulation cap has a centralized channel configured to flow a first process gas from an upper surface to an expanded channel and an outer channel configured to flow a second process gas from an upper surface to a groove which is encircling the expanded channel. In one example, the plasma screen has an upper surface containing an inner area with a plurality of holes and an outer area with a plurality of slots. The insulation cap may be positioned on top of the plasma screen to form a centralized gas region with the expanded channel and a circular gas region with the groove.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: December 14, 2010
    Assignee: Applied Materisals, Inc.
    Inventors: Paul Ma, Kavita Shah, Dien-Yeh Wu, Seshadri Ganguli, Christophe Marcadal, Frederick C. Wu, Schubert S. Chu
  • Patent number: 7833358
    Abstract: A semiconductor processing chamber is cleaned by introducing a cleaning gas into a processing chamber, striking a plasma in a remote plasma source that is in communication with the processing chamber, measuring the impedance of the plasma, vaporizing a ruthenium containing deposit on a surface of the processing chamber to form a ruthenium containing gas mixture, and flowing the gas mixture through an analyzer and into an exhaust collection assembly. The measurement of the impedance of the plasma in combination with the ruthenium concentration provides an accurate indication of chamber cleanliness.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: November 16, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Schubert S. Chu, Frederick C. Wu, Christophe Marcadal, Seshadri Ganguli, Dien-Yeh Wu, Kavita Shah, Paul Ma
  • Patent number: 7832432
    Abstract: Embodiments described herein provide ampoule assemblies to contain, store, or dispense chemical precursors. In one embodiment, an ampoule assembly is provided which includes an ampoule containing a first material layer disposed on the outside of the ampoule and a second material layer disposed over the first material layer, wherein the first material layer is thermally more conductive than the second material layer, an inlet line in fluid communication with the ampoule and containing a first manual shut-off valve disposed therein, an outlet line in fluid communication with the ampoule and containing a second manual shut-off valve disposed therein, and a first bypass line connected between the inlet line and the outlet line. In some embodiments, the ampoule assembly may contain disconnect fittings. In other embodiments, the first bypass line has a shut-off valve disposed therein to fluidly couple or decouple the inlet line and the outlet line.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: November 16, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Norman Nakashima, Christophe Marcadal, Seshadri Ganguli, Paul Ma, Schubert S. Chu
  • Patent number: 7748400
    Abstract: Embodiments are related to ampoule assemblies containing bypass lines and valves. In one embodiment, ampoule assembly is provided which includes inlet and outlet lines coupled with and in fluid communication to an ampoule body, a bypass line connected between the inlet and outlet lines and containing a bypass valve disposed therein. The ampoule assembly further contains a shut-off valve disposed in the inlet line between the ampoule body and a connection point of the bypass line and the inlet line, a shut-off valve disposed in the outlet line between the ampoule body and a connection point of the bypass line and the outlet line, another shut-off valve disposed in the inlet line between the ampoule body and a disconnect fitting disposed on the inlet line, and another shut-off valve disposed in the outlet line between the ampoule body and a disconnect fitting disposed on the outlet line.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: July 6, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Norman Nakashima, Christophe Marcadal, Seshadri Ganguli, Paul Ma, Schubert S. Chu
  • Patent number: 7682946
    Abstract: Embodiments of the invention provide a method for forming a material on a substrate during an atomic layer deposition (ALD) process, such as a plasma-enhanced ALD (PE-ALD) process. In one embodiment, a method is provided which includes flowing at least one process gas through at least one conduit to form a circular gas flow pattern, exposing a substrate to the circular gas flow pattern, sequentially pulsing at least one chemical precursor into the process gas and igniting a plasma from the process gas to deposit a material on the substrate. In one example, the circular gas flow pattern has circular geometry of a vortex, a helix, a spiral, or a derivative thereof. Materials that may be deposited by the method include ruthenium, tantalum, tantalum nitride, tungsten or tungsten nitride. Other embodiments of the invention provide an apparatus configured to form the material during the PE-ALD process.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: March 23, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Paul Ma, Kavita Shah, Dien-Yeh Wu, Seshadri Ganguli, Christophe Marcadal, Frederick C. Wu, Schubert S. Chu
  • Publication number: 20100062149
    Abstract: Embodiments of the invention provide methods for depositing a material on a substrate within a processing chamber during a vapor deposition process, such as an atomic layer deposition (ALD) process. In one embodiment, a method is provided which includes sequentially exposing the substrate to a first precursor gas and at least a second precursor gas while depositing a material on the substrate during the ALD process, and continuously or periodically exposing the substrate to a treatment gas prior to and/or during the ALD process. The deposition rate of the material being deposited may be controlled by varying the amount of treatment gas exposed to the substrate. In one example, tantalum nitride is deposited on the substrate and the alkylamino metal precursor gas contains a tantalum precursor, such as pentakis(dimethylamino) tantalum (PDMAT), the second precursor gas contains a nitrogen precursor, such as ammonia, and the treatment gas contains dimethylamine (DMA).
    Type: Application
    Filed: May 13, 2009
    Publication date: March 11, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Paul Ma, Joseph F. Aubuchon, Jiang Lu, Mei Chang
  • Publication number: 20100006167
    Abstract: Embodiments described herein provide ampoule assemblies to contain, store, or dispense chemical precursors. In one embodiment, an ampoule assembly is provided which includes an ampoule containing a first material layer disposed on the outside of the ampoule and a second material layer disposed over the first material layer, wherein the first material layer is thermally more conductive than the second material layer, an inlet line in fluid communication with the ampoule and containing a first manual shut-off valve disposed therein, an outlet line in fluid communication with the ampoule and containing a second manual shut-off valve disposed therein, and a first bypass line connected between the inlet line and the outlet line. In some embodiments, the ampoule assembly may contain disconnect fittings. In other embodiments, the first bypass line has a shut-off valve disposed therein to fluidly couple or decouple the inlet line and the outlet line.
    Type: Application
    Filed: July 9, 2009
    Publication date: January 14, 2010
    Inventors: Norman Nakashima, Christophe Marcadal, Seshadri Ganguli, Paul Ma, Schubert S. Chu
  • Publication number: 20090314370
    Abstract: Embodiments are related to ampoule assemblies containing bypass lines and valves. In one embodiment, ampoule assembly is provided which includes inlet and outlet lines coupled with and in fluid communication to an ampoule body, a bypass line connected between the inlet and outlet lines and containing a bypass valve disposed therein. The ampoule assembly further contains a shut-off valve disposed in the inlet line between the ampoule body and a connection point of the bypass line and the inlet line, a shut-off valve disposed in the outlet line between the ampoule body and a connection point of the bypass line and the outlet line, another shut-off valve disposed in the inlet line between the ampoule body and a disconnect fitting disposed on the inlet line, and another shut-off valve disposed in the outlet line between the ampoule body and a disconnect fitting disposed on the outlet line.
    Type: Application
    Filed: July 9, 2009
    Publication date: December 24, 2009
    Inventors: Norman Nakashima, Christophe Marcadal, Seshadri Ganguli, Paul Ma, Schubert S. Chu
  • Patent number: 7568495
    Abstract: Embodiments described herein provide ampoule assemblies to contain, store, or dispense chemical precursors. In one embodiment, an ampoule assembly is provided which includes an ampoule containing a first material layer disposed on the outside of the ampoule and a second material layer disposed over the first material layer, wherein the first material layer is thermally more conductive than the second material layer, an inlet line in fluid communication with the ampoule and containing a first manual shut-off valve disposed therein, an outlet line in fluid communication with the ampoule and containing a second manual shut-off valve disposed therein, and a first bypass line connected between the inlet line and the outlet line. In some embodiments, the ampoule assembly may contain disconnect fittings. In other embodiments, the first bypass line has a shut-off valve disposed therein to fluidly couple or decouple the input line and the outlet line.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: August 4, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Norman Nakashima, Christophe Marcadal, Seshadri Ganguli, Paul Ma, Schubert S. Chu
  • Patent number: 7562672
    Abstract: An ampoule assembly is configured with a bypass line and valve to allow the purging of the lines and valves connected to the ampoule. The ampoule assembly, in one embodiment, includes an ampoule, an inlet line, an outlet line, and a bypass line connected between the inlet line and the outlet line, the bypass line having a shut-off valve disposed therein to fluidly couple or decouple the inlet line and the outlet line. The shut-off valve disposed in the bypass line may be remotely controllable. Also, additional remotely controllable shut-off valves may be provided in the inlet and the outlet lines.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: July 21, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Norman Nakashima, Christophe Marcadal, Seshadri Ganguli, Paul Ma, Schubert S. Chu
  • Publication number: 20090084317
    Abstract: An atomic layer deposition chamber comprises a gas distributor comprising a central cap having a conical passageway between a gas inlet and gas outlet. The gas distributor also has a ceiling plate comprising first and second conical apertures that are connected. The first conical aperture receives a process gas from the gas outlet of the central cap. The second conical aperture extends radially outwardly from the first conical aperture. The gas distributor also has a peripheral ledge that rests on a sidewall of the chamber.
    Type: Application
    Filed: September 28, 2007
    Publication date: April 2, 2009
    Inventors: Dien-Yeh Wu, Schubert S. Chu, Paul Ma, Jeffrey Tobin
  • Publication number: 20090053426
    Abstract: Embodiments of the invention provide processes for depositing a cobalt layer on a barrier layer and subsequently depositing a conductive material, such as copper or a copper alloy, thereon. In one embodiment, a method for depositing materials on a substrate surface is provided which includes forming a barrier layer on a substrate, exposing the substrate to dicobalt hexacarbonyl butylacetylene (CCTBA) and hydrogen to form a cobalt layer on the barrier layer during a vapor deposition process (e.g., CVD or ALD), and depositing a conductive material over the cobalt layer. In some examples, the barrier layer and/or the cobalt layer may be exposed to a gas or a reagent during a treatment process, such as a thermal process, an in situ plasma process, or a remote plasma process.
    Type: Application
    Filed: August 29, 2008
    Publication date: February 26, 2009
    Inventors: JIANG LU, Hyoung-Chan Ha, Paul Ma, Seshadri Ganguli, Joseph F. Aubuchon, Sang Ho Yu, Murali K. Narasimhan
  • Publication number: 20080268171
    Abstract: Embodiments of the invention provide an apparatus configured to form a material during an atomic layer deposition (ALD) process, such as a plasma-enhanced ALD (PE-ALD) process. In one embodiment, a plasma baffle assembly for receiving a process gas within a plasma-enhanced vapor deposition chamber is provided which includes a plasma baffle plate containing an upper surface to receive a process gas and a lower surface to emit the process gas, a plurality of openings configured to flow the process gas from above the upper surface to below the lower surface, wherein each opening is positioned at a predetermined angle of a vertical axis that is perpendicular to the lower surface, and a conical nose cone on the upper surface. In one example, the openings are slots positioned at a predetermined angle to emit the process gas with a circular flow pattern.
    Type: Application
    Filed: October 16, 2007
    Publication date: October 30, 2008
    Inventors: PAUL MA, Kavita Shah, Dien-Yeh Wu, Seshadri Ganguli, Christophe Marcadal, Frederick C. Wu, Schubert S. Chu
  • Publication number: 20080107809
    Abstract: Embodiments of the invention relate to apparatuses and methods for depositing materials on substrates during atomic layer deposition processes. In one embodiment, a chamber for processing substrates is provided which includes a chamber lid assembly containing an expanding channel extending along a central axis at a central portion of the chamber lid assembly and a tapered bottom surface extending from the expanding channel to a peripheral portion of the chamber lid assembly. The tapered bottom surface may be shaped and sized to substantially cover the substrate receiving surface. The chamber lid assembly further contains a conduit coupled to a gas passageway, another conduit coupled to another gas passageway, and both gas passageways circumvent the expanding channel. Each of the passageways has a plurality of inlets extending into the expanding channel and the inlets are positioned to provide a circular gas flow through the expanding channel.
    Type: Application
    Filed: October 24, 2007
    Publication date: May 8, 2008
    Inventors: Dien-Yeh Wu, Puneet Bajaj, Xiaoxiong Yuan, Steven Kim, Schubert Chu, Paul Ma, Joseph Aubuchon
  • Publication number: 20080102208
    Abstract: Embodiments of the invention relate to apparatuses and methods for depositing materials on substrates during atomic layer deposition processes. In one embodiment, a chamber for processing substrates is provided which includes a chamber lid assembly containing a centrally positioned gas dispersing channel, wherein a converging portion of the gas dispersing channel tapers towards a central axis of the gas dispersing channel and a diverging portion of the gas dispersing channel tapers away from the central axis. The chamber lid assembly further contains a tapered bottom surface extending from the diverging portion of the gas dispersing channel to a peripheral portion of the chamber lid assembly, wherein the tapered bottom surface is shaped and sized to substantially cover the substrate and two conduits are coupled to gas inlets within the converging portion of the gas dispersing channel and positioned to provide a circular gas flow through the gas dispersing channel.
    Type: Application
    Filed: October 24, 2007
    Publication date: May 1, 2008
    Inventors: Dien-Yeh Wu, Puneet Bajaj, Xiaoxiong Yuan, Steven Kim, Schubert Chu, Paul Ma, Joseph Aubuchon
  • Publication number: 20080102203
    Abstract: Embodiments of the invention relate to apparatuses and methods for depositing materials on substrates during atomic layer deposition processes. In one embodiment, a chamber for processing substrates is provided which includes a chamber lid assembly containing an expanding channel at a central portion of the chamber lid assembly, wherein an upper portion of the expanding channel extends substantially parallel along a central axis of the expanding channel, and an expanding portion of the expanding channel tapers away from the central axis. The chamber lid assembly further contains a conduit coupled to a gas inlet, another conduit coupled to another gas inlet, and both gas inlets are positioned to provide a circular gas flow through the expanding channel. In one example, the inner surface within the upper portion of the expanding channel has a lower mean surface roughness than the inner surface within the expanding portion of the expanding channel.
    Type: Application
    Filed: October 24, 2007
    Publication date: May 1, 2008
    Inventors: Dien-Yeh Wu, Puneet Bajaj, Xiaoxiong Yuan, Steven Kim, Schubert Chu, Paul Ma, Joseph Aubuchon