Patents by Inventor Pei-Ren Jeng
Pei-Ren Jeng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12288721Abstract: A method includes etching a semiconductor substrate to form a trench between a first semiconductor strip and a second semiconductor strip. The first semiconductor strip has a first width at about 5 nm below a top of the first semiconductor strip and a second width at about 60 nm below the top of the first semiconductor strip. The first width is smaller than about 5 nm, and the second width is smaller than about 14.5 nm. The trench is filled with dielectric materials to form an isolation region, which is recessed to have a depth. A top portion of the first semiconductor strip protrudes higher than the isolation region to form a protruding fin. The protruding fin has a height smaller than the depth. A gate stack is formed to extend on a sidewall and a top surface of the protruding fin.Type: GrantFiled: January 17, 2022Date of Patent: April 29, 2025Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: De-Wei Yu, Ming-Feng Hsieh, Hsueh-Chang Sung, Pei-Ren Jeng, Yee-Chia Yeo, Chien-Chia Cheng
-
Publication number: 20250098280Abstract: A method includes forming a fin extending from a substrate; depositing a liner over a top surface and sidewalls of the fin, where the minimum thickness of the liner is dependent on selected according to a first germanium concentration of the fin; forming a shallow trench isolation (STI) region adjacent the fin; removing a first portion of the liner on sidewalls of the fin, the first portion of the liner being above a topmost surface of the STI region; and forming a gate stack on sidewalls and a top surface of the fin, where the gate stack is in physical contact with the liner.Type: ApplicationFiled: December 2, 2024Publication date: March 20, 2025Inventors: Yi-Cheng Li, Pin-Ju Liang, Ta-Chun Ma, Pei-Ren Jeng, Yee-Chia Yeo
-
Publication number: 20250063807Abstract: In an embodiment, a method includes forming a first fin and a second fin within an insulation material over a substrate, the first fin and the second fin includes different materials, the insulation material being interposed between the first fin and the second fin, the first fin having a first width and the second fin having a second width; forming a first capping layer over the first fin; and forming a second capping layer over the second fin, the first capping layer having a first thickness, the second capping layer having a second thickness different from the first thickness.Type: ApplicationFiled: November 5, 2024Publication date: February 20, 2025Inventors: Hung-Yao Chen, Pin-Chu Liang, Hsueh-Chang Sung, Pei-Ren Jeng, Yee-Chia Yeo
-
Patent number: 12191212Abstract: A method includes forming a fin extending from a substrate; depositing a liner over a top surface and sidewalls of the fin, where the minimum thickness of the liner is dependent on selected according to a first germanium concentration of the fin; forming a shallow trench isolation (STI) region adjacent the fin; removing a first portion of the liner on sidewalls of the fin, the first portion of the liner being above a topmost surface of the STI region; and forming a gate stack on sidewalls and a top surface of the fin, where the gate stack is in physical contact with the liner.Type: GrantFiled: May 5, 2022Date of Patent: January 7, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Yi-Cheng Li, Pin-Ju Liang, Ta-Chun Ma, Pei-Ren Jeng, Yee-Chia Yeo
-
Patent number: 12170228Abstract: In an embodiment, a method includes forming a first fin and a second fin within an insulation material over a substrate, the first fin and the second fin includes different materials, the insulation material being interposed between the first fin and the second fin, the first fin having a first width and the second fin having a second width; forming a first capping layer over the first fin; and forming a second capping layer over the second fin, the first capping layer having a first thickness, the second capping layer having a second thickness different from the first thickness.Type: GrantFiled: August 8, 2023Date of Patent: December 17, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Hung-Yao Chen, Pin-Chu Liang, Hsueh-Chang Sung, Pei-Ren Jeng, Yee-Chia Yeo
-
Patent number: 12159925Abstract: In an embodiment, a device includes: a substrate; a first semiconductor region extending from the substrate, the first semiconductor region including silicon; a second semiconductor region on the first semiconductor region, the second semiconductor region including silicon germanium, edge portions of the second semiconductor region having a first germanium concentration, a center portion of the second semiconductor region having a second germanium concentration less than the first germanium concentration; a gate stack on the second semiconductor region; and source and drain regions in the second semiconductor region, the source and drain regions being adjacent the gate stack.Type: GrantFiled: July 20, 2022Date of Patent: December 3, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Ji-Yin Tsai, Jung-Jen Chen, Pei-Ren Jeng, Chii-Horng Li, Kei-Wei Chen, Yee-Chia Yeo
-
Publication number: 20240371983Abstract: In an embodiment, a device includes: a substrate; a first semiconductor region extending from the substrate, the first semiconductor region including silicon; a second semiconductor region on the first semiconductor region, the second semiconductor region including silicon germanium, edge portions of the second semiconductor region having a first germanium concentration, a center portion of the second semiconductor region having a second germanium concentration less than the first germanium concentration; a gate stack on the second semiconductor region; and source and drain regions in the second semiconductor region, the source and drain regions being adjacent the gate stack.Type: ApplicationFiled: July 19, 2024Publication date: November 7, 2024Inventors: Ji-Yin Tsai, Jung-Jen Chen, Pei-Ren Jeng, Chii-Horng Li, Kei-Wei Chen, Yee-Chia Yeo
-
Publication number: 20240363729Abstract: A method includes forming a semiconductor fin protruding higher than a top surface of an isolation region. The semiconductor fin overlaps a semiconductor strip, and the semiconductor strip contacts the isolation region. The method further includes forming a gate stack on a sidewall and a top surface of a first portion of the semiconductor fin, and etching the semiconductor fin and the semiconductor strip to form a trench. The trench has an upper portion in the semiconductor fin and a lower portion in the semiconductor strip. A semiconductor region is grown in the lower portion of the trench. Process gases used for growing the semiconductor region are free from both of n-type dopant-containing gases and p-type dopant-containing gases. A source/drain region is grown in the upper portion of the trench, wherein the source/drain region includes a p-type or an n-type dopant.Type: ApplicationFiled: July 5, 2024Publication date: October 31, 2024Inventors: Meng-Ku Chen, Ji-Yin Tsai, Jeng-Wei Yu, Yi-Fang Pai, Pei-Ren Jeng, Yee-Chia Yeo, Chii-Horng Li
-
Publication number: 20240363418Abstract: A method of forming a fin field-effect transistor device includes: forming a gate structure over a first fin and a second fin; forming, on a first side of the gate structure, a first recess and a second recess in the first fin and the second fin, respectively; and forming a source/drain region in the first and second recesses, which includes: forming a barrier layer in the first and second recesses; forming a first epitaxial material over the barrier layer, where a first portion of the first epitaxial material over the first fin is spaced apart from a second portion of the first epitaxial material over the second fin; forming a second epitaxial material over the first and second portions of the first epitaxial material, where the second epitaxial material extends continuously from the first fin to the second fin; and forming a capping layer over the second epitaxial material.Type: ApplicationFiled: July 9, 2024Publication date: October 31, 2024Inventors: Jeng-Wei Yu, Yi-Fang Pai, Pei-Ren Jeng, Chii-Horng Li, Yee-Chia Yeo
-
Patent number: 12094778Abstract: A method of forming a fin field-effect transistor device includes: forming a gate structure over a first fin and a second fin; forming, on a first side of the gate structure, a first recess and a second recess in the first fin and the second fin, respectively; and forming a source/drain region in the first and second recesses, which includes: forming a barrier layer in the first and second recesses; forming a first epitaxial material over the barrier layer, where a first portion of the first epitaxial material over the first fin is spaced apart from a second portion of the first epitaxial material over the second fin; forming a second epitaxial material over the first and second portions of the first epitaxial material, where the second epitaxial material extends continuously from the first fin to the second fin; and forming a capping layer over the second epitaxial material.Type: GrantFiled: September 30, 2021Date of Patent: September 17, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Jeng-Wei Yu, Yi-Fang Pai, Pei-Ren Jeng, Chii-Horng Li, Yee-Chia Yeo
-
Patent number: 12087845Abstract: A system and methods of manufacturing semiconductor devices is described herein. The method includes forming a recess between fins in a substrate and forming a dielectric layer over the fins and in the recess. Once the dielectric layer has been formed, a bottom seed structure is formed over the dielectric layer within the recess and the dielectric layer is exposed along sidewalls of the recess. A dummy gate material is grown from the bottom seed structure in a bottom-up deposition process without growing the dummy gate material from the dielectric layer exposed along sidewalls of the recess.Type: GrantFiled: April 21, 2021Date of Patent: September 10, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Chia-Ao Chang, Pei-Ren Jeng, Chii-Horng Li, Yee-Chia Yeo
-
Patent number: 12068395Abstract: A method includes forming a semiconductor fin protruding higher than a top surface of an isolation region. The semiconductor fin overlaps a semiconductor strip, and the semiconductor strip contacts the isolation region. The method further includes forming a gate stack on a sidewall and a top surface of a first portion of the semiconductor fin, and etching the semiconductor fin and the semiconductor strip to form a trench. The trench has an upper portion in the semiconductor fin and a lower portion in the semiconductor strip. A semiconductor region is grown in the lower portion of the trench. Process gases used for growing the semiconductor region are free from both of n-type dopant-containing gases and p-type dopant-containing gases. A source/drain region is grown in the upper portion of the trench, wherein the source/drain region includes a p-type or an n-type dopant.Type: GrantFiled: June 18, 2021Date of Patent: August 20, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Meng-Ku Chen, Ji-Yin Tsai, Jeng-Wei Yu, Yi-Fang Pai, Pei-Ren Jeng, Yee-Chia Yeo, Chii-Horng Li
-
Publication number: 20240274667Abstract: A semiconductor device having an improved source/drain region profile and a method for forming the same are disclosed. In an embodiment, a method includes etching one or more semiconductor fins to form one or more recesses; and forming a source/drain region in the one or more recesses, the forming the source/drain region including epitaxially growing a first semiconductor material in the one or more recesses at a temperature of 600° C. to 800° C., the first semiconductor material including doped silicon germanium; and conformally depositing a second semiconductor material over the first semiconductor material at a temperature of 300° C. to 600° C., the second semiconductor material including doped silicon germanium and having a different composition than the first semiconductor material.Type: ApplicationFiled: April 24, 2024Publication date: August 15, 2024Inventors: Heng-Wen Ting, Kei-Wei Chen, Chii-Horng Li, Pei-Ren Jeng, Hsueh-Chang Sung, Yen-Ru Lee, Chun-An Lin
-
Patent number: 12014922Abstract: An apparatus includes a vacuum chamber, a wafer transfer mechanism, a first gas source, a second gas source and a reuse gas pipe. The vacuum chamber is divided into at least three reaction regions including a first reaction region, a second reaction region and a third reaction region. The wafer transfer mechanism is structured to transfer a wafer from the first reaction region to the third reaction region via the second reaction region. The first gas source supplies a first gas to the first reaction region via a first gas pipe, and a second gas source supplies a second gas to the second reaction region via a second gas pipe. The reuse gas pipe is connected between the first reaction region and the third reaction region for supplying an unused first gas collected in the first reaction region to the third reaction region.Type: GrantFiled: February 3, 2022Date of Patent: June 18, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Tsai-Fu Hsiao, Kuang-Yuan Hsu, Pei-Ren Jeng, Tze-Liang Lee
-
Patent number: 12002854Abstract: A semiconductor device having an improved source/drain region profile and a method for forming the same are disclosed. In an embodiment, a method includes etching one or more semiconductor fins to form one or more recesses; and forming a source/drain region in the one ore more recesses, the forming the source/drain region including epitaxially growing a first semiconductor material in the one or more recesses at a temperature of 600° C. to 800° C., the first semiconductor material including doped silicon germanium; and conformally depositing a second semiconductor material over the first semiconductor material at a temperature of 300° C. to 600° C., the second semiconductor material including doped silicon germanium and having a different composition than the first semiconductor material.Type: GrantFiled: November 8, 2021Date of Patent: June 4, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Heng-Wen Ting, Kei-Wei Chen, Chii-Horng Li, Pei-Ren Jeng, Hsueh-Chang Sung, Yen-Ru Lee, Chun-An Lin
-
Patent number: 11948840Abstract: In an embodiment, a method includes forming a first fin and a second fin within an insulation material over a substrate, the first fin and the second fin includes different materials, the insulation material being interposed between the first fin and the second fin, the first fin having a first width and the second fin having a second width; forming a first capping layer over the first fin; and forming a second capping layer over the second fin, the first capping layer having a first thickness, the second capping layer having a second thickness different from the first thickness.Type: GrantFiled: August 31, 2021Date of Patent: April 2, 2024Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Hung-Yao Chen, Pin-Chu Liang, Hsueh-Chang Sung, Pei-Ren Jeng, Yee-Chia Yeo
-
Publication number: 20240096958Abstract: An embodiment is a semiconductor structure. The semiconductor structure includes a fin on a substrate. A gate structure is over the fin. A source/drain is in the fin proximate the gate structure. The source/drain includes a bottom layer, a supportive layer over the bottom layer, and a top layer over the supportive layer. The supportive layer has a different property than the bottom layer and the top layer, such as a different material, a different natural lattice constant, a different dopant concentration, and/or a different alloy percent content.Type: ApplicationFiled: November 28, 2023Publication date: March 21, 2024Inventors: Jung-Chi Tai, Chii-Horng Li, Pei-Ren Jeng, Yen-Ru Lee, Yan-Ting Lin, Chih-Yun Chin
-
Patent number: 11855142Abstract: An embodiment is a semiconductor structure. The semiconductor structure includes a fin on a substrate. A gate structure is over the fin. A source/drain is in the fin proximate the gate structure. The source/drain includes a bottom layer, a supportive layer over the bottom layer, and a top layer over the supportive layer. The supportive layer has a different property than the bottom layer and the top layer, such as a different material, a different natural lattice constant, a different dopant concentration, and/or a different alloy percent content.Type: GrantFiled: July 25, 2022Date of Patent: December 26, 2023Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Jung-Chi Tai, Chii-Horng Li, Pei-Ren Jeng, Yen-Ru Lee, Yan-Ting Lin, Chih-Yun Chin
-
Patent number: 11854901Abstract: A device is manufactured by providing a semiconductor fin protruding from a major surface of a silicon substrate comprising silicon. A liner and a shallow trench isolation (STI) region are formed adjacent the semiconductor fin. A silicon cap is deposited over the semiconductor fin. The resulting cap consists of crystalline silicon in the portion over the semiconductor fin and consists of amorphous silicon in the portions over the liner and STI region. An HCl etch bake process is performed to remove the portions of amorphous silicon over the liner and the STI region.Type: GrantFiled: June 17, 2022Date of Patent: December 26, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Cheng-Hsiung Yen, Ta-Chun Ma, Chien-Chang Su, Jung-Jen Chen, Pei-Ren Jeng, Chii-Horng Li, Kei-Wei Chen
-
Publication number: 20230402326Abstract: In an embodiment, a method includes forming a first fin and a second fin within an insulation material over a substrate, the first fin and the second fin includes different materials, the insulation material being interposed between the first fin and the second fin, the first fin having a first width and the second fin having a second width; forming a first capping layer over the first fin; and forming a second capping layer over the second fin, the first capping layer having a first thickness, the second capping layer having a second thickness different from the first tType: ApplicationFiled: August 8, 2023Publication date: December 14, 2023Inventors: Hung-Yao Chen, Pin-Chu Liang, Hsueh-Chang Sung, Pei-Ren Jeng, Yee-Chia Yeo