Patents by Inventor Peter J. Zampardi

Peter J. Zampardi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120223422
    Abstract: To reduce the radio frequency (RF) losses associated with high RF loss plating, such as, for example, Nickel/Palladium/Gold (Ni/Pd/Au) plating, an on-die passive device, such as a capacitor, resistor, or inductor, associated with a radio frequency integrated circuit (RFIC) is placed in an RF upper signal path with respect to the RF signal output of the RFIC. By placing the on-die passive device in the RF upper signal path, the RF current does not directly pass through the high RF loss plating material of the passive device bonding pad.
    Type: Application
    Filed: March 3, 2011
    Publication date: September 6, 2012
    Applicant: Skyworks Solutions, Inc.
    Inventors: Weimin Sun, Peter J. Zampardi, Hongxiao Shao
  • Publication number: 20120222892
    Abstract: To reduce the RF losses associated with high RF loss plating, such as, for example, Ni/Pd/Au plating, the solder mask is reconfigured to prevent the edges and sidewalls of the wire-bond areas from being plated in some embodiments. Leaving the edges and sidewalls of the wire-bond areas free from high RF loss plating, such as Ni/Pd/Au plating, provides a path for the RF current to flow around the high resistivity material, which reduces the RF signal loss associated with the high resistivity plating material.
    Type: Application
    Filed: March 3, 2011
    Publication date: September 6, 2012
    Applicant: Skyworks Solutions, Inc.
    Inventors: Weimin Sun, Peter J. Zampardi, Hongxiao Shao
  • Publication number: 20120171967
    Abstract: Designs and methodologies related to attenuators having a thin-film resistor assembly are disclosed. In some embodiments, the thin-film assembly can include a first and second thin-film resistor, each having a main portion with an input end and an output end. The input end of the first thin-film resistor is interconnected to the input end of the second thin-film resistors, and the output end of the first thin-film resistor is interconnected to the output end of the second thin-film resistor. The first and second thin-film resistors are disposed relative to one another so as to define a separation. The separation region reduces the likelihood of hot spot regions forming at or near the center of the thin-film structure and improves power handling capability for a given resistor width. Also disclosed are examples of how the foregoing features can be implemented in different products and methods of fabrication.
    Type: Application
    Filed: November 30, 2011
    Publication date: July 5, 2012
    Applicant: Skyworks Solutions, Inc.
    Inventors: Peter J. Zampardi, JR., Kai Hay Kwok
  • Publication number: 20120139006
    Abstract: A semiconductor structure includes a heterojunction bipolar transistor (HBT) including a collector layer located over a substrate, the collector layer including a semiconductor material, and a field effect transistor (FET) located over the substrate, the FET having a channel formed in the semiconductor material that forms the collector layer of the HBT. In some implementations, a second FET can be provided so as to be located over the substrate and configured to include a channel formed in a semiconductor material that forms an emitter of the HBT. One or more of the foregoing features can be implemented in devices such as a die, a packaged module, and a wireless device.
    Type: Application
    Filed: November 3, 2011
    Publication date: June 7, 2012
    Applicant: SKYWORKS SOLUTIONS, INC.
    Inventors: Peter J. Zampardi, JR., Hsiang-Chih Sun
  • Publication number: 20120112243
    Abstract: A semiconductor structure includes a heterojunction bipolar transistor (HBT) including a collector layer located over a substrate, the collector layer including a semiconductor material, and a field effect transistor (FET) located over the substrate, the FET having a channel formed in the semiconductor material that forms the collector layer of the HBT.
    Type: Application
    Filed: November 4, 2010
    Publication date: May 10, 2012
    Inventors: Peter J. Zampardi, HsiangChih Sun
  • Publication number: 20110303987
    Abstract: Bipolar field effect transistor (BiFET) structures and methods of forming the same are provided. In one embodiment, an apparatus includes a substrate and a plurality of epitaxial layers disposed over the substrate. The plurality of epitaxial layers includes a first epitaxial layer, a second epitaxial layer disposed over the first epitaxial layer, and a third epitaxial layer disposed over the second epitaxial layer. The first epitaxial layer includes at least a portion of a channel of a first field effect transistor (FET) and the third epitaxial layer includes at least a portion of a channel of a second FET.
    Type: Application
    Filed: August 22, 2011
    Publication date: December 15, 2011
    Applicant: SKYWORKS SOLUTIONS, INC.
    Inventors: Peter J. Zampardi, JR., Hsiang-Chih Sun
  • Patent number: 8026555
    Abstract: According to an exemplary embodiment, a bipolar/dual FET structure includes a bipolar transistor situated over a substrate. The bipolar/dual FET structure further includes an enhancement-mode FET and a depletion-mode FET situated over the substrate. In the bipolar/dual FET structure, the channel of the enhancement-mode FET is situated above the base of the bipolar transistor and the channel of the depletion-mode FET is situated below the base of the bipolar transistor. The channel of the enhancement-mode FET is isolated from the channel of the depletion-mode FET so as to decouple the enhancement-mode FET from the depletion mode FET.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: September 27, 2011
    Assignee: Skyworks Solutions, Inc.
    Inventors: Peter J. Zampardi, HsiangChih Sun
  • Publication number: 20100237433
    Abstract: According to an exemplary embodiment, a bipolar/dual FET structure includes a bipolar transistor situated over a substrate. The bipolar/dual FET structure further includes an enhancement-mode FET and a depletion-mode FET situated over the substrate. In the bipolar/dual FET structure, the channel of the enhancement-mode FET is situated above the base of the bipolar transistor and the channel of the depletion-mode FET is situated below the base of the bipolar transistor. The channel of the enhancement-mode FET is isolated from the channel of the depletion-mode FET so as to decouple the enhancement-mode FET from the depletion mode FET.
    Type: Application
    Filed: June 2, 2010
    Publication date: September 23, 2010
    Applicant: SKYWORKS SOLUTIONS, INC.
    Inventors: Peter J. Zampardi, HsiangChih Sun
  • Publication number: 20100213513
    Abstract: A hyperabrupt diode structure includes a substrate formed from a low-ohmic contact material, a graded semiconductor layer comprising gallium arsenide, an offset layer comprising indium gallium phosphide over the graded semiconductor layer, a contact layer comprising gallium arsenide over the offset layer, a first electrical contact on the substrate, the first electrical contact forming a cathode of the hyperabrupt diode structure, and a second electrical contact over the contact layer, the second electrical contact forming an anode of the hyperabrupt diode structure.
    Type: Application
    Filed: February 26, 2009
    Publication date: August 26, 2010
    Applicant: Skyworks Solutions, Inc.
    Inventors: Peter J. Zampardi, HsiangChih Sun
  • Patent number: 7755107
    Abstract: According to an exemplary embodiment, a bipolar/dual FET structure includes a bipolar transistor situated over a substrate. The bipolar/dual FET structure further includes an enhancement-mode FET and a depletion-mode FET situated over the substrate. In the bipolar/dual FET structure, the channel of the enhancement-mode FET is situated above the base of the bipolar transistor and the channel of the depletion-mode FET is situated below the base of the bipolar transistor. The channel of the enhancement-mode FET is isolated from the channel of the depletion-mode FET so as to decouple the enhancement-mode FET from the depletion mode FET.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: July 13, 2010
    Assignee: Skyworks Solutions, Inc.
    Inventors: Peter J. Zampardi, Mike Sun
  • Publication number: 20100072517
    Abstract: According to an exemplary embodiment, a bipolar/dual FET structure includes a bipolar transistor situated over a substrate. The bipolar/dual FET structure further includes an enhancement-mode FET and a depletion-mode FET situated over the substrate. In the bipolar/dual FET structure, the channel of the enhancement-mode FET is situated above the base of the bipolar transistor and the channel of the depletion-mode FET is situated below the base of the bipolar transistor. The channel of the enhancement-mode FET is isolated from the channel of the depletion-mode FET so as to decouple the enhancement-mode FET from the depletion mode FET.
    Type: Application
    Filed: September 24, 2008
    Publication date: March 25, 2010
    Applicant: SKYWORKS SOLUTIONS, INC.
    Inventors: Peter J. Zampardi, Mike Sun
  • Publication number: 20070297106
    Abstract: A circuit and process is provided for protecting a device from the detrimental effects of electro-static discharge (ESD). The circuit includes an ESD breakdown device that is used to activate a current drawdown device. When a voltage exceeding the ESD breakdown device's breakdown voltage is applied, a signal is generated that causes the current drawdown device to pump current to ground. In this way, the effects of the ESD charge are substantially reduced. In one example, the ESD breakdown device is a reverse biased diode, and the current drawdown circuit includes a Darlington circuit. When an ESD surge causes the diode to breakdown, a signal is applied to the Darlington circuit, which pumps the ESD current safely to ground.
    Type: Application
    Filed: June 23, 2006
    Publication date: December 27, 2007
    Inventors: Peter H. Dai, Jane Xu, Peter J. Zampardi, Ravi Ramanathan
  • Patent number: 7019383
    Abstract: According to one exemplary embodiment, a gallium arsenide heterojunction bipolar transistor comprises a collector layer and a first spacer layer situated over the collector layer, where the first spacer layer is a high-doped P+ layer. For example, the first spacer layer may comprise GaAs doped with carbon. The gallium arsenide heterojunction bipolar transistor further comprises a base layer situated over the first spacer layer. The base layer may comprise, for example, a concentration of indium, where the concentration of indium is linearly graded in the base layer. The base layer may comprise InGaAsN, for example. The gallium arsenide heterojunction bipolar transistor further comprises an emitter layer situated over the base layer. The emitter layer may comprise, for example, InGaP.
    Type: Grant
    Filed: February 26, 2003
    Date of Patent: March 28, 2006
    Assignee: Skyworks Solutions, Inc.
    Inventors: Peter J. Zampardi, Kevin Choi, Lance G. Rushing
  • Patent number: 6906359
    Abstract: According to one exemplary embodiment, a BiFET situated on a substrate comprises an emitter layer segment situated over the substrate, where the emitter layer segment comprises a semiconductor of a first type. The HBT further comprises a first segment of an etch stop layer, where the first segment of the etch stop layer comprises InGaP. The BiFET further comprises a FET situated over the substrate, where the FET comprises source and drain regions, where a second segment of the etch stop layer is situated under the source and drain regions, and where the second segment of the etch stop layer comprises InGaP. The FET further comprises a semiconductor layer of a second type situated under the second segment of the etch stop layer. The etch stop layer increases linearity of the FET and does not degrade electron current flow in the HBT.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: June 14, 2005
    Assignee: Skyworks Solutions, Inc.
    Inventors: Peter J. Zampardi, Richard Pierson
  • Publication number: 20040164319
    Abstract: According to one exemplary embodiment, a gallium arsenide heterojunction bipolar transistor comprises a collector layer and a first spacer layer situated over the collector layer, where the first spacer layer is a high-doped P+ layer. For example, the first spacer layer may comprise GaAs doped with carbon. The gallium arsenide heterojunction bipolar transistor further comprises a base layer situated over the first spacer layer. The base layer may comprise, for example, a concentration of indium, where the concentration of indium is linearly graded in the base layer. The base layer may comprise InGaAsN, for example. The gallium arsenide heterojunction bipolar transistor further comprises an emitter layer situated over the base layer. The emitter layer may comprise, for example, InGaP.
    Type: Application
    Filed: February 26, 2003
    Publication date: August 26, 2004
    Applicant: Skyworks Solutions, Inc.
    Inventors: Peter J. Zampardi, Kevin Choi, Lance G. Rushing
  • Patent number: 6563145
    Abstract: A compound collector double heterojunction bipolar transistor (CCHBT) incorporates a collector comprising two layers: a wide bandgap collector region (e.g., GaAs), and a narrow bandgap collector region (e.g., InGaP). The higher electric field is supported in the wide bandgap region, thereby increasing breakdown voltage and reducing offset voltage. At the same time, the use of wide bandgap material in the depleted portion of the collector, and a higher mobility material toward the end and outside of the depletion region, reduces series resistance as well as knee voltage.
    Type: Grant
    Filed: December 29, 1999
    Date of Patent: May 13, 2003
    Inventors: Charles E. Chang, Richard L. Pierson, Peter J. Zampardi, Peter M. Asbeck
  • Patent number: 6506659
    Abstract: In one disclosed embodiment, a collector is deposited and a base is grown on the collector, for example, by epitaxially depositing either silicon or silicon-germanium. An emitter is fabricated on the base followed by implant doping an extrinsic base region. For example, the extrinsic base region can be implant doped using boron. The extrinsic base region doping diffuses out during subsequent thermal processing steps in chip fabrication, creating an out diffusion region in the device, which can adversely affect various operating characteristics, such as parasitic capacitance and linearity. The out diffusion is controlled by counter doping the out diffusion region. For example, the counter doped region can be implant doped using arsenic or phosphorous. Also, for example, the counter doped region can be formed using tilt implanting or, alternatively, by implant doping the counter doped region and forming a spacer on the base prior to implanting the extrinsic base region.
    Type: Grant
    Filed: March 17, 2001
    Date of Patent: January 14, 2003
    Assignee: Newport Fab, LLC
    Inventors: Peter J. Zampardi, Klaus F. Schuegraf, Paul Kempf, Peter Asbeck
  • Publication number: 20020132435
    Abstract: In one disclosed embodiment, a collector is deposited and a base is grown on the collector, for example, by epitaxially depositing either silicon or silicon-germanium. An emitter is fabricated on the base followed by implant doping an extrinsic base region. For example, the extrinsic base region can be implant doped using boron. The extrinsic base region doping diffuses out during subsequent thermal processing steps in chip fabrication, creating an out diffusion region in the device, which can adversely affect various operating characteristics, such as parasitic capacitance and linearity. The out diffusion is controlled by counter doping the out diffusion region. For example, the counter doped region can be implant doped using arsenic or phosphorous. Also, for example, the counter doped region can be formed using tilt implanting or, alternatively, by implant doping the counter doped region and forming a spacer on the base prior to implanting the extrinsic base region.
    Type: Application
    Filed: March 17, 2001
    Publication date: September 19, 2002
    Applicant: CONEXANT SYSTEMS, INC.
    Inventors: Peter J. Zampardi, Klaus F. Schuegraf, Paul Kempf, Peter M. Asbeck