Patents by Inventor Peter J. Zampardi

Peter J. Zampardi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150236141
    Abstract: This disclosure relates to bipolar transistors, such as heterojunction bipolar transistors, having at least one grading in the collector. One aspect of this disclosure is a bipolar transistor that includes a collector having a high doping concentration at a junction with the base and at least one grading in which doping concentration increases away from the base. In some embodiments, the high doping concentration can be at least about 3×1016 cm?3. According to certain embodiments, the collector includes two gradings. Such bipolar transistors can be implemented, for example, in power amplifiers.
    Type: Application
    Filed: April 29, 2015
    Publication date: August 20, 2015
    Inventor: Peter J. Zampardi, JR.
  • Patent number: 9105488
    Abstract: A semiconductor structure includes a heterojunction bipolar transistor (HBT) including a collector layer located over a substrate, the collector layer including a semiconductor material, and a field effect transistor (FET) located over the substrate, the FET having a channel formed in the semiconductor material that forms the collector layer of the HBT. In some implementations, a second FET can be provided so as to be located over the substrate and configured to include a channel formed in a semiconductor material that forms an emitter of the HBT. One or more of the foregoing features can be implemented in devices such as a die, a packaged module, and a wireless device.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: August 11, 2015
    Assignee: Skyworks Solutions, Inc.
    Inventors: Peter J. Zampardi, Jr., Hsiang-Chih Sun
  • Patent number: 9070732
    Abstract: This disclosure relates to bipolar transistors, such as heterojunction bipolar transistors, having at a doping spike in the collector. The doping spike can be disposed relatively near an interface between the collector and the base. For instance, the doping spike can be disposed within half of the thickness of the collector from the interface between the collector and the base. Such bipolar transistors can be implemented, for example, in power amplifiers.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: June 30, 2015
    Assignee: Skyworks Solutions, Inc.
    Inventors: Peter J. Zampardi, Jr., Kai Hay Kwok
  • Patent number: 9059332
    Abstract: A varactor includes a field effect transistor (FET) integrated with at least a portion of a bipolar junction transistor (BJT), in which a back gate of the FET shares an electrical connection with a base of the BJT, and in which a reverse voltage applied to the back gate of the FET creates a continuously variable capacitance in a channel of the FET.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: June 16, 2015
    Assignee: Skyworks Solutions, Inc.
    Inventors: Bin Li, Peter J. Zampardi, Jr., Andre G. Metzger
  • Patent number: 9054065
    Abstract: This disclosure relates to bipolar transistors, such as heterojunction bipolar transistors, having at least one grading in the collector. One aspect of this disclosure is a bipolar transistor that includes a collector having a high doping concentration at a junction with the base and at least one grading in which doping concentration increases away from the base. In some embodiments, the high doping concentration can be at least about 3×1016 cm?3. According to certain embodiments, the collector includes two gradings. Such bipolar transistors can be implemented, for example, in power amplifiers.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: June 9, 2015
    Assignee: Skyworks Solutions, Inc.
    Inventor: Peter J. Zampardi, Jr.
  • Patent number: 9041472
    Abstract: A power amplifier module includes a power amplifier including a GaAs bipolar transistor having a collector, a base abutting the collector, and an emitter, the collector having a doping concentration of at least about 3×1016 cm?3 at a junction with the base, the collector also having at least a first grading in which doping concentration increases away from the base; and an RF transmission line driven by the power amplifier, the RF transmission line including a conductive layer and finish plating on the conductive layer, the finish plating including a gold layer, a palladium layer proximate the gold layer, and a diffusion barrier layer proximate the palladium layer, the diffusion barrier layer including nickel and having a thickness that is less than about the skin depth of nickel at 0.9 GHz. Other embodiments of the module are provided along with related methods and components thereof.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: May 26, 2015
    Assignee: Skyworks Solutions, Inc.
    Inventors: Howard E. Chen, Yifan Guo, Dinhphuoc Vu Hoang, Mehran Janani, Tin Myint Ko, Philip John Lehtola, Anthony James LoBianco, Hardik Bhupendra Modi, Hoang Mong Nguyen, Matthew Thomas Ozalas, Sandra Louise Petty-Weeks, Matthew Sean Read, Jens Albrecht Riege, David Steven Ripley, Hongxiao Shao, Hong Shen, Weimin Sun, Hsiang-Chih Sun, Patrick Lawrence Welch, Peter J. Zampardi, Jr., Guohao Zhang
  • Publication number: 20150061092
    Abstract: To reduce the radio frequency (RF) losses associated with high RF loss plating, such as, for example, Nickel/Palladium/Gold (Ni/Pd/Au) plating, an on-die passive device, such as a capacitor, resistor, or inductor, associated with a radio frequency integrated circuit (RFIC) is placed in an RF upper signal path with respect to the RF signal output of the RFIC. By placing the on-die passive device in the RF upper signal path, the RF current does not directly pass through the high RF loss plating material of the passive device bonding pad.
    Type: Application
    Filed: November 11, 2014
    Publication date: March 5, 2015
    Inventors: Weimin Sun, Peter J. Zampardi, JR., Hongxiao Shao
  • Publication number: 20150044863
    Abstract: To reduce radio frequency (RF) losses during operation of a radio frequency integrated circuit (RFIC) module, the RFIC module is fabricated such that at least one of an edge of the wirebond pad on the copper trace and a sidewall of the copper trace is free from high-resistivity plating material. The unplated portion provides a path for the RF current to flow around the high-resistivity material, which reduces the RF signal loss associated with the high resistivity plating material.
    Type: Application
    Filed: October 28, 2014
    Publication date: February 12, 2015
    Inventors: Weimin Sun, Peter J. Zampardi, JR., Hongxiao Shao
  • Patent number: 8901611
    Abstract: Bipolar field effect transistor (BiFET) structures and methods of forming the same are provided. In one embodiment, an apparatus includes a substrate and a plurality of epitaxial layers disposed over the substrate. The plurality of epitaxial layers includes a first epitaxial layer, a second epitaxial layer disposed over the first epitaxial layer, and a third epitaxial layer disposed over the second epitaxial layer. The first epitaxial layer includes at least a portion of a channel of a first field effect transistor (FET) and the third epitaxial layer includes at least a portion of a channel of a second FET.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: December 2, 2014
    Assignee: Skyworks Solutions, Inc.
    Inventors: Peter J. Zampardi, Jr., Hsiang-Chih Sun
  • Patent number: 8896091
    Abstract: To reduce the radio frequency (RF) losses associated with high RF loss plating, such as, for example, Nickel/Palladium/Gold (Ni/Pd/Au) plating, an on-die passive device, such as a capacitor, resistor, or inductor, associated with a radio frequency integrated circuit (RFIC) is placed in an RF upper signal path with respect to the RF signal output of the RFIC. By placing the on-die passive device in the RF upper signal path, the RF current does not directly pass through the high RF loss plating material of the passive device bonding pad.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: November 25, 2014
    Assignee: Skyworks Solutions, Inc.
    Inventors: Weimin Sun, Peter J. Zampardi, Jr., Hongxiao Shao
  • Patent number: 8889995
    Abstract: To reduce the RF losses associated with high RF loss plating, such as, for example, Ni/Pd/Au plating, the solder mask is reconfigured to prevent the edges and sidewalls of the wire-bond areas from being plated in some embodiments. Leaving the edges and sidewalls of the wire-bond areas free from high RF loss plating, such as Ni/Pd/Au plating, provides a path for the RF current to flow around the high resistivity material, which reduces the RF signal loss associated with the high resistivity plating material.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: November 18, 2014
    Assignee: Skyworks Solutions, Inc.
    Inventors: Weimin Sun, Peter J. Zampardi, Hongxiao Shao
  • Publication number: 20140175629
    Abstract: To reduce the radio frequency (RF) losses associated with high RF loss plating, such as, for example, Nickel/Palladium/Gold (Ni/Pd/Au) plating, an on-die passive device, such as a capacitor, resistor, or inductor, associated with a radio frequency integrated circuit (RFIC) is placed in an RF upper signal path with respect to the RF signal output of the RFIC. By placing the on-die passive device in the RF upper signal path, the RF current does not directly pass through the high RF loss plating material of the passive device bonding pad.
    Type: Application
    Filed: February 25, 2014
    Publication date: June 26, 2014
    Applicant: Skyworks Solutions, Inc.
    Inventors: Weimin Sun, Peter J. Zampardi, Hongxiao Shao
  • Publication number: 20140097472
    Abstract: Bipolar field effect transistor (BiFET) structures and methods of forming the same are provided. In one embodiment, an apparatus includes a substrate and a plurality of epitaxial layers disposed over the substrate. The plurality of epitaxial layers includes a first epitaxial layer, a second epitaxial layer disposed over the first epitaxial layer, and a third epitaxial layer disposed over the second epitaxial layer. The first epitaxial layer includes at least a portion of a channel of a first field effect transistor (FET) and the third epitaxial layer includes at least a portion of a channel of a second FET.
    Type: Application
    Filed: October 2, 2013
    Publication date: April 10, 2014
    Applicant: SKYWORKS SOLUTIONS, INC.
    Inventors: Peter J. Zampardi, JR., Hsiang-Chih Sun
  • Patent number: 8686537
    Abstract: To reduce the radio frequency (RF) losses associated with high RF loss plating, such as, for example, Nickel/Palladium/Gold (Ni/Pd/Au) plating, an on-die passive device, such as a capacitor, resistor, or inductor, associated with a radio frequency integrated circuit (RFIC) is placed in an RF upper signal path with respect to the RF signal output of the RFIC. By placing the on-die passive device in the RF upper signal path, the RF current does not directly pass through the high RF loss plating material of the passive device bonding pad.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: April 1, 2014
    Assignee: Skyworks Solutions, Inc.
    Inventors: Weimin Sun, Peter J. Zampardi, Hongxiao Shao
  • Patent number: 8643118
    Abstract: Bipolar field effect transistor (BiFET) structures and methods of forming the same are provided. In one embodiment, an apparatus includes a substrate and a plurality of epitaxial layers disposed over the substrate. The plurality of epitaxial layers includes a first epitaxial layer, a second epitaxial layer disposed over the first epitaxial layer, and a third epitaxial layer disposed over the second epitaxial layer. The first epitaxial layer includes at least a portion of a channel of a first field effect transistor (FET) and the third epitaxial layer includes at least a portion of a channel of a second FET.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: February 4, 2014
    Assignee: Skyworks Solutions, Inc.
    Inventors: Peter J Zampardi, Jr., Hsiang-Chih Sun
  • Publication number: 20140002188
    Abstract: A power amplifier module includes a power amplifier including a GaAs bipolar transistor having a collector, a base abutting the collector, and an emitter, the collector having a doping concentration of at least about 3×1016 cm?3 at a junction with the base, the collector also having at least a first grading in which doping concentration increases away from the base; and an RF transmission line driven by the power amplifier, the RF transmission line including a conductive layer and finish plating on the conductive layer, the finish plating including a gold layer, a palladium layer proximate the gold layer, and a diffusion barrier layer proximate the palladium layer, the diffusion barrier layer including nickel and having a thickness that is less than about the skin depth of nickel at 0.9 GHz. Other embodiments of the module are provided along with related methods and components thereof.
    Type: Application
    Filed: June 13, 2013
    Publication date: January 2, 2014
    Applicant: SKYWORKS SOLUTIONS, INC.
    Inventors: Howard E. Chen, Yifan Guo, Dinhphuoc Vu Hoang, Mehran Janani, Tin Myint Ko, Philip John Lehtola, Anthony James LoBianco, Hardik Bhupendra Modi, Hoang Mong Nguyen, Matthew Thomas Ozalas, Sandra Louise Petty-Weeks, Matthew Sean Read, Jens Albrecht Riege, David Steven Ripley, Hongxiao Shao, Hong Shen, Weimin Sun, Hsiang-Chih Sun, Patrick Lawrence Welch, Peter J. Zampardi, JR., Guohao Zhang
  • Publication number: 20130344825
    Abstract: The present disclosure relates to a system for biasing a power amplifier. The system can include a first die that includes a power amplifier circuit and a passive component having an electrical property that depends on one or more conditions of the first die. Further, the system can include a second die including a bias signal generating circuit that is configured to generate a bias signal based at least in part on measurement of the electrical property of the passive component of the first die.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 26, 2013
    Inventors: David Steven Ripley, Philip John Lehtola, Peter J. Zampardi, JR., Hongxiao Shao, Tin Myint Ko, Matthew Thomas Ozalas
  • Publication number: 20130285120
    Abstract: This disclosure relates to bipolar transistors, such as heterojunction bipolar transistors, having at least one grading in the collector. One aspect of this disclosure is a bipolar transistor that includes a collector having a high doping concentration at a junction with the base and at least one grading in which doping concentration increases away from the base. In some embodiments, the high doping concentration can be at least about 3×1016 cm?3. According to certain embodiments, the collector includes two gradings. Such bipolar transistors can be implemented, for example, in power amplifiers.
    Type: Application
    Filed: April 30, 2012
    Publication date: October 31, 2013
    Applicant: Skyworks Solutions, Inc.
    Inventor: Peter J. Zampardi, JR.
  • Publication number: 20130285121
    Abstract: This disclosure relates to bipolar transistors, such as heterojunction bipolar transistors, having at a doping spike in the collector. The doping spike can be disposed relatively near an interface between the collector and the base. For instance, the doping spike can be disposed within half of the thickness of the collector from the interface between the collector and the base. Such bipolar transistors can be implemented, for example, in power amplifiers.
    Type: Application
    Filed: April 25, 2013
    Publication date: October 31, 2013
    Inventors: Peter J. Zampardi, JR., Kai Hay Kwok
  • Publication number: 20120235731
    Abstract: A varactor includes a field effect transistor (FET) integrated with at least a portion of a bipolar junction transistor (BJT), in which a back gate of the FET shares an electrical connection with a base of the BJT, and in which a reverse voltage applied to the back gate of the FET creates a continuously variable capacitance in a channel of the FET.
    Type: Application
    Filed: March 22, 2012
    Publication date: September 20, 2012
    Applicant: SKYWORKS SOLUTIONS, INC.
    Inventors: Bin Li, Peter J. Zampardi, JR., Andre G. Metzger