Patents by Inventor Peter Schultz

Peter Schultz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110106479
    Abstract: A blood glucose sensing system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes stabilization circuitry. The stabilization circuitry causes a first voltage to be applied to one of the electrodes for a first timeframe and causes a second voltage to be applied to one of the electrodes for a second timeframe. The stabilization circuitry repeats the application of the first voltage and the second voltage to continue the anodic-cathodic cycle. The sensor electronics device may include a power supply, a regulator, and a voltage application device, where the voltage application device receives a regulated voltage from the regulator, applies a first voltage to an electrode for the first timeframe, and applies a second voltage to an electrode for the second timeframe.
    Type: Application
    Filed: January 11, 2011
    Publication date: May 5, 2011
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: RAJIV SHAH, Bahar Reghabi, James L. Henke, Wayne A. Morgan, Gopikrishnan Soundarapajan, David Y. Choy, Peter Schultz, Udo Hoss
  • Publication number: 20110106480
    Abstract: A blood glucose sensing system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes stabilization circuitry. The stabilization circuitry causes a first voltage to be applied to one of the electrodes for a first timeframe and causes a second voltage to be applied to one of the electrodes for a second timeframe. The stabilization circuitry repeats the application of the first voltage and the second voltage to continue the anodic-cathodic cycle. The sensor electronics device may include a power supply, a regulator, and a voltage application device, where the voltage application device receives a regulated voltage from the regulator, applies a first voltage to an electrode for the first timeframe, and applies a second voltage to an electrode for the second timeframe.
    Type: Application
    Filed: January 11, 2011
    Publication date: May 5, 2011
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: RAJIV SHAH, Bahar Reghabi, James L. Henke, Wayne A. Morgan, Gopikrishnan Soundararajan, David Y. Choy, Peter Schultz, Udo Hoss
  • Publication number: 20110101995
    Abstract: A blood glucose sensing system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes stabilization circuitry. The stabilization circuitry causes a first voltage to be applied to one of the electrodes for a first timeframe and causes a second voltage to be applied to one of the electrodes for a second timeframe. The stabilization circuitry repeats the application of the first voltage and the second voltage to continue the anodic-cathodic cycle. The sensor electronics device may include a power supply, a regulator, and a voltage application device, where the voltage application device receives a regulated voltage from the regulator, applies a first voltage to an electrode for the first timeframe, and applies a second voltage to an electrode for the second timeframe.
    Type: Application
    Filed: January 11, 2011
    Publication date: May 5, 2011
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: RAJIV SHAH, Bahar Reghabi, James L. Henke, Wayne A. Morgan, Gopikrishnan Soundararajan, David Y. Choy, Peter Schultz, Udo Hoss
  • Publication number: 20110105867
    Abstract: A method and apparatus for non-invasively determining a concentration of glucose in a subject using optical excitation and detection is provided. The method includes emitting an exciter beam (B1) to irradiate a portion (130) of tissue of the subject, causing physical and chemical changes in the surface, and causing an initial CPU back scattering (D1) of light. The method further includes periodically emitting a probe beam (B2) which irradiates the portion of tissue and causes periodic back scatterings (D2) of light. The initial and periodic back scatterings are detected and converted into electrical signals of at least the amplitude, frequency or decay time of the physical and chemical changes, the back scatterings being modulated by the physical and chemical changes. By differentiating over time at least one of the amplitude, frequency or decay time of the physical and chemical changes, the concentration of glucose may be determined.
    Type: Application
    Filed: October 31, 2008
    Publication date: May 5, 2011
    Inventors: Peter Schultz, Arkady Amosov, Natalia Izvarina, Sergey Kravetz
  • Patent number: 7915025
    Abstract: The invention provides methods and compositions for in vivo incorporation of unnatural amino acids. Also provided are compositions including proteins with unnatural amino acids.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: March 29, 2011
    Assignees: The Scripps Research Institute, The Regents of the University of California
    Inventors: Peter Schultz, Lei Wang, John Christopher Anderson, Jason W. Chin, David R. Liu, Thomas J. Magliery, Eric Meggers, Ryan Aaron Mehl, Miro Pastrnak, Stephen William Santoro, Zhiwen Zhang
  • Publication number: 20110054281
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Application
    Filed: September 21, 2010
    Publication date: March 3, 2011
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: RAJIV SHAH, WAYNE A. MORGAN, DAVID Y. CHOY, JAMES L. HENKE, BAHAR REGHABI, GOPIKRISHNAN SOUNDARARAJAN, PETER SCHULTZ, UDO HOSS
  • Publication number: 20110048941
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Application
    Filed: September 21, 2010
    Publication date: March 3, 2011
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: RAJIV SHAH, WAYNE A. MORGAN, DAVID Y. CHOY, JAMES L. HENKE, BAHAR REGHABI, GOPIKRISHNAN SOUNDARARAJAN, PETER SCHULTZ, UDO HOSS
  • Publication number: 20110048938
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Application
    Filed: September 21, 2010
    Publication date: March 3, 2011
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: RAJIV SHAH, Wayne A. Morgan, David Y. Choy, James L. Henke, Bahar Reghabi, Gopikrishnan Soundararajan, Peter Schultz, Udo Hoss
  • Publication number: 20110027867
    Abstract: This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided.
    Type: Application
    Filed: October 26, 2007
    Publication date: February 3, 2011
    Inventors: Peter Schultz, Lei Wang, John Christopher Anderson, Jason W. Chin, David R. Liu, Thomas J. Magliery, Eric L. Meggers, Ryan Aaron Mehl, Miro Pastrnak, Stephen William Santoro, Zhiwen Zhang
  • Publication number: 20110006880
    Abstract: A medical device as provided here includes a security module configured to regulate operations of the medical device. The medical device also includes a fingerprint reader operatively coupled to the security module. The fingerprint reader is configured to detect fingerprints, and to generate fingerprint data corresponding to swiped fingerprints. The medical device also includes at least one memory element operatively coupled to the security module, and configured to maintain a list of fingerprint-secured operations of the medical device, each of the fingerprint-secured operations being linked to a respective assigned set of identifiable fingerprint data.
    Type: Application
    Filed: July 9, 2009
    Publication date: January 13, 2011
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Kenny J. LONG, Rebecca K. GOTTLIEB, Peter SCHULTZ
  • Publication number: 20110010105
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Application
    Filed: September 21, 2010
    Publication date: January 13, 2011
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: RAJIV SHAH, Wayne A. Morgan, David Y. Choy, James L. Henke, Bahar Reghabi, Gopikrishnan Soundararajan, Peter Schultz, Udo Hoss
  • Publication number: 20110010104
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Application
    Filed: September 21, 2010
    Publication date: January 13, 2011
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: RAJIV SHAH, Wayne A. Morgan, David Y. Choy, James L. Henke, Bahar Reghabi, Gopikrishnan Soundararajan, Peter Schultz, Udo Hoss
  • Patent number: 7741071
    Abstract: This invention provides methods and compositions for incorporation of an unnatural amino acid into a peptide using an orthogonal aminoacyl tRNA synthetase/tRNA pair. In particular, an orthogonal pair is provided to incorporate 5-hydroxy-L-tryptophan in a position encoded by an opal mutation.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: June 22, 2010
    Assignee: The Scripps Research Institute
    Inventors: Zhiwen Zhang, Lital Alfonta, Peter Schultz
  • Patent number: D615778
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: May 18, 2010
    Inventor: Peter Schultz
  • Patent number: D619385
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: July 13, 2010
    Inventor: Peter Schultz
  • Patent number: D619386
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: July 13, 2010
    Inventor: Peter Schultz
  • Patent number: D621968
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: August 17, 2010
    Assignee: Setolite Lichttechnik GmbH
    Inventor: Peter Schultz
  • Patent number: D624336
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: September 28, 2010
    Inventor: Peter Schultz
  • Patent number: D628408
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: December 7, 2010
    Inventor: Peter Schultz
  • Patent number: D634132
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: March 15, 2011
    Inventor: Peter Schultz