Patents by Inventor Peter Scott Andrews
Peter Scott Andrews has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20210408328Abstract: LED chips and related fabrication methods are disclosed. A LED chip includes an active layer arranged on or over a light-transmissive substrate having a light extraction surface. The light extraction surface comprises a microtextured etched surface having a non-repeating, irregular textural pattern (e.g., with an average feature depth in a range of from 120 nm to 400 nm, and preferably free of any plurality of equally sized, shaped, and spaced textural features). The microtextured etched surface may be formed by applying a micromask having first and second solid materials of different etching rates over the light extraction surface, and exposing the micromask to an etchant (e.g., via reactive ion etching) to form a microtextured etched surface having a non-repeating, irregular textural pattern. Lumiphoric material may be applied over the microtextured surface.Type: ApplicationFiled: June 24, 2021Publication date: December 30, 2021Inventor: Peter Scott Andrews
-
Patent number: 11101411Abstract: Solid-state light emitting devices including light-emitting diodes (LEDs), and more particularly packaged LEDs are disclosed. LED packages are disclosed that include an LED chip with multiple discrete active layer portions mounted on a submount. The LED packages may further include wavelength conversion elements and light-altering materials. The multiple discrete active layer portions may be electrically connected in series, parallel, or in individually addressable arrangements. The LED chip with the multiple discrete active layer portions may provide the LED package with improved brightness, improved alignment, simplified manufacturing, and reduced costs.Type: GrantFiled: June 26, 2019Date of Patent: August 24, 2021Assignee: CreeLED, Inc.Inventors: Peter Scott Andrews, Colin Blakely, Jesse Reiherzer, Arthur F. Pun
-
Publication number: 20210167122Abstract: Pixelated-LED chips and related methods are disclosed. A pixelated-LED chip includes an active layer with independently electrically accessible active layer portions arranged on or over a light-transmissive substrate. The active layer portions are configured to illuminate different light-transmissive substrate portions to form pixels. Various enhancements may beneficially provide increased contrast (i.e., reduced cross-talk between pixels) and/or promote inter-pixel illumination homogeneity, without unduly restricting light utilization efficiency. In some aspects, an underfill material with improved surface coverage is provided between adjacent pixels of a pixelated-LED chip. The underfill material may be arranged to cover all lateral surfaces between the adjacent pixels. In some aspects, discontinuous substrate portions are formed before application of underfill materials. In some aspects, a wetting layer is provided to improve wicking or flow of underfill materials during various fabrication steps.Type: ApplicationFiled: January 19, 2021Publication date: June 3, 2021Inventors: Peter Scott Andrews, Steven Wuester
-
Patent number: 11004890Abstract: Substrate based light emitter devices, components, and related methods are disclosed. In some aspects, light emitter components can include a substrate and a plurality of light emitter devices provided over the substrate. Each device can include a surface mount device (SMD) adapted to mount over an external substrate or heat sink. In some aspects, each device of the plurality of devices can include at least one LED chip electrically connected to one or more traces and at least one pair of bottom contacts adapted to mount over a surface of external substrate. The component can further include a continuous layer of encapsulant disposed over each device of the plurality of devices. Multiple devices can be singulated from the component.Type: GrantFiled: August 14, 2017Date of Patent: May 11, 2021Assignee: CreeLED, Inc.Inventors: Sung Chul Joo, Peter Scott Andrews, Erin R. F. Welch
-
Publication number: 20210126160Abstract: A pixelated-LED chip includes an active layer with active layer portions, segregated by streets, that are configured to illuminate different light-transmissive substrate portions to form pixels. A light extraction surface of each substrate portion includes protruding features and light extraction surface recesses that may be formed by sawing. Underfill material may be provided between a pixelated-LED chip and a mounting surface, as well as between pixels and between anodes and cathodes thereof. Certain implementations provide light extraction surface recesses that are non-parallel to each street defined through the active layer. Certain implementations provide light extraction surface recesses that are non-aligned with (e.g., non-parallel to) anode-cathode boundaries of each anode-cathode pair. Such arrangements reduce a likelihood of cracking in portions of a pixelated-LED chip. Methods for fabricating pixelated-LED chips are also provided.Type: ApplicationFiled: October 29, 2020Publication date: April 29, 2021Inventor: Peter Scott Andrews
-
Patent number: 10991861Abstract: Flip chip LEDs incorporate multi-layer reflectors and light transmissive substrates patterned along an internal surface adjacent to semiconductor layers. A multi-layer reflector may include a metal layer and a dielectric layer containing conductive vias. Portions of a multi-layer reflector may wrap around a LED mesa including an active region, while being covered with passivation material. A substrate patterned along an internal surface together with a multi-layer reflector enables reduction of optical losses. A light transmissive fillet material proximate to edge emitting surfaces of an emitter chip may enable adequate coverage with lumiphoric material. An emitter chip may be elevated with increased thickness of solder material and/or contacts, and may reduce luminous flux loss when reflective materials are present on a submount.Type: GrantFiled: September 29, 2016Date of Patent: April 27, 2021Assignee: Cree, Inc.Inventors: Michael John Bergmann, Matthew Donofrio, Peter Scott Andrews, Colin Blakely, Troy Gould, Jack Vu
-
Publication number: 20210119090Abstract: Light emitting diodes, components, and related methods, with improved performance over existing light emitting diodes. In some embodiments, light emitter devices included herein include a submount, a light emitter, a light affecting material, and a wavelength conversion component. Wavelength conversion components provided herein include a transparent substrate having an upper surface and a lower surface, and a phosphor compound disposed on the upper surface or lower surface, wherein the wavelength conversion component is configured to alter a wavelength of a light emitted from a light source when positioned proximate to the light source.Type: ApplicationFiled: December 9, 2020Publication date: April 22, 2021Inventors: Peter Scott Andrews, Jesse Colin Reiherzer, Amber C. Abare
-
Patent number: 10962199Abstract: Solid state lighting components are provided with improved color rendering, improved color uniformity, and improved directional lighting, and that are suitable for use in high output lighting applications and can be used in place of CDMH bulb lighting. Exemplary solid state lighting components include a substrate comprising a light emitter surface and or more light emitters disposed on and/or over the light emitter surface. Exemplary components include a light directing optic and/or a diffusing optic for mixing light. The light directing optic may be disposed at least partially around a perimeter of the light emitter surface. The diffusing optic may be disposed between portions of the light directing optic and spaced apart from the light emitter surface.Type: GrantFiled: June 15, 2020Date of Patent: March 30, 2021Assignee: Cree, Inc.Inventors: Florin A. Tudorica, Christopher P. Hussell, John Wesley Durkee, Peter Scott Andrews, Mark Cash, David Randolph
-
Patent number: 10964858Abstract: Light emitting diodes, components, and related methods, with improved performance over existing light emitting diodes. In some embodiments, light emitter devices included herein include a submount, a light emitter, a light affecting material, and a wavelength conversion component. Wavelength conversion components provided herein include a transparent substrate having an upper surface and a lower surface, and a phosphor compound disposed on the upper surface or lower surface, wherein the wavelength conversion component is configured to alter a wavelength of a light emitted from a light source when positioned proximate to the light source.Type: GrantFiled: April 10, 2019Date of Patent: March 30, 2021Assignee: Cree, Inc.Inventors: Peter Scott Andrews, Jesse Colin Reiherzer, Amber C. Abare
-
Publication number: 20210074687Abstract: At least one array of LEDs (e.g., in a flip chip configuration) is supported by a substrate having a light extraction surface overlaid with at least one lumiphoric material. Light segregation elements registered with gaps between LEDs are configured to reduce interaction between emissions of different LEDs and/or lumiphoric material regions to reduce scattering and/or optical crosstalk, thereby preserving pixel-like resolution of the resulting emissions. Light segregation elements may be formed by mechanical sawing or etching to define grooves or recesses in a substrate, and filling the grooves or recesses with light-reflective or light-absorptive material. Light segregation elements external to a substrate may be defined by photolithographic patterning and etching of a sacrificial material, and/or by 3D printing.Type: ApplicationFiled: November 17, 2020Publication date: March 11, 2021Inventors: John Edmond, Matthew Donofrio, Jesse Reiherzer, Peter Scott Andrews, Joseph G. Clark, Kevin Haberern
-
Patent number: 10930826Abstract: Light emitting diodes, components, and related methods, with improved performance over existing light emitting diodes. In some embodiments, light emitter devices included herein include a submount, a light emitter, a light affecting material, and a wavelength conversion component. Wavelength conversion components provided herein include a transparent substrate having an upper surface and a lower surface, and a phosphor compound disposed on the upper surface or lower surface, wherein the wavelength conversion component is configured to alter a wavelength of a light emitted from a light source when positioned proximate to the light source.Type: GrantFiled: April 10, 2019Date of Patent: February 23, 2021Assignee: Cree, Inc.Inventors: Peter Scott Andrews, Jesse Colin Reiherzer, Amber C. Abare
-
Patent number: 10910352Abstract: At least one array of LEDs (e.g., in a flip chip configuration) is supported by a substrate having a light extraction surface overlaid with at least one lumiphoric material. Light segregation elements registered with gaps between LEDs are configured to reduce interaction between emissions of different LEDs and/or lumiphoric material regions to reduce scattering and/or optical crosstalk, thereby preserving pixel-like resolution of the resulting emissions. Light segregation elements may be formed by mechanical sawing or etching to define grooves or recesses in a substrate, and filling the grooves or recesses with light-reflective or light-absorptive material. Light segregation elements external to a substrate may be defined by photolithographic patterning and etching of a sacrificial material, and/or by 3D printing.Type: GrantFiled: May 16, 2019Date of Patent: February 2, 2021Assignee: Cree, Inc.Inventors: John Edmond, Matthew Donofrio, Jesse Reiherzer, Peter Scott Andrews, Joseph G. Clark, Kevin Haberern
-
Patent number: 10903268Abstract: Pixelated-LED chips and related methods are disclosed. A pixelated-LED chip includes an active layer with independently electrically accessible active layer portions arranged on or over a light-transmissive substrate. The active layer portions are configured to illuminate different light-transmissive substrate portions to form pixels. Various enhancements may beneficially provide increased contrast (i.e., reduced cross-talk between pixels) and/or promote inter-pixel illumination homogeneity, without unduly restricting light utilization efficiency. In some aspects, an underfill material with improved surface coverage is provided between adjacent pixels of a pixelated-LED chip. The underfill material may be arranged to cover all lateral surfaces between the adjacent pixels. In some aspects, discontinuous substrate portions are formed before application of underfill materials. In some aspects, a wetting layer is provided to improve wicking or flow of underfill materials during various fabrication steps.Type: GrantFiled: August 31, 2020Date of Patent: January 26, 2021Assignee: CREE, INC.Inventors: Peter Scott Andrews, Steven Wuester
-
Patent number: 10903265Abstract: Pixelated-LED chips and related methods are disclosed. A pixelated-LED chip includes an active layer with independently electrically accessible active layer portions arranged on or over a light-transmissive substrate. The active layer portions are configured to illuminate different light-transmissive substrate portions to form pixels. Various enhancements may beneficially provide increased contrast (i.e., reduced cross-talk between pixels) and/or promote inter-pixel illumination homogeneity, without unduly restricting light utilization efficiency. In some aspects, an underfill material with improved surface coverage is provided between adjacent pixels of a pixelated-LED chip. The underfill material may be arranged to cover all lateral surfaces between the adjacent pixels. In some aspects, discontinuous substrate portions are formed before application of underfill materials. In some aspects, a wetting layer is provided to improve wicking or flow of underfill materials during various fabrication steps.Type: GrantFiled: December 21, 2018Date of Patent: January 26, 2021Assignee: CREE, INC.Inventors: Peter Scott Andrews, Steven Wuester
-
Patent number: 10897000Abstract: Light emitting diodes, components, and related methods, with improved performance over existing light emitting diodes. In some embodiments, light emitter devices included herein include a submount, a light emitter, a light affecting material, and a wavelength conversion component. Wavelength conversion components provided herein include a transparent substrate having an upper surface and a lower surface, and a phosphor compound disposed on the upper surface or lower surface, wherein the wavelength conversion component is configured to alter a wavelength of a light emitted from a light source when positioned proximate to the light source.Type: GrantFiled: April 10, 2019Date of Patent: January 19, 2021Assignee: Cree, Inc.Inventors: Peter Scott Andrews, Jesse Colin Reiherzer, Amber C. Abare
-
Publication number: 20210005793Abstract: Solid-state lighting devices including light-emitting diodes (LEDs) and more particularly packaged LEDs with light-altering materials are disclosed. A light-altering material is provided in particular configurations within an LED package to redirect light from an LED chip within the LED package and contribute to a desired emission pattern of the LED package. The light-altering material may also block light from the LED chip from escaping in a non-desirable direction, such as large or wide angle emissions. The light-altering material may be arranged on a lumiphoric material adjacent to the LED chip in various configurations. The LED package may include an encapsulant on the light-altering material and the lumiphoric material.Type: ApplicationFiled: September 10, 2020Publication date: January 7, 2021Inventors: Kyle Damborsky, Derek Miller, Jack Vu, Peter Scott Andrews, Jasper Cabalu, Colin Blakely, Jesse Reiherzer
-
Publication number: 20200411730Abstract: Solid-state light emitting devices including light-emitting diodes (LEDs), and more particularly packaged LEDs are disclosed. LED packages are disclosed that include an LED chip with multiple discrete active layer portions mounted on a submount. The LED packages may further include wavelength conversion elements and light-altering materials. The multiple discrete active layer portions may be electrically connected in series, parallel, or in individually addressable arrangements. The LED chip with the multiple discrete active layer portions may provide the LED package with improved brightness, improved alignment, simplified manufacturing, and reduced costs.Type: ApplicationFiled: June 26, 2019Publication date: December 31, 2020Inventors: Peter Scott Andrews, Colin Blakely, Jesse Reiherzer, Arthur F. Pun
-
Publication number: 20200411487Abstract: Pixelated-LED chips and related methods are disclosed. A pixelated-LED chip includes an active layer with independently electrically accessible active layer portions arranged on or over a light-transmissive substrate. The active layer portions are configured to illuminate different light-transmissive substrate portions to form pixels. Various enhancements may beneficially provide increased contrast (i.e., reduced cross-talk between pixels) and/or promote inter-pixel illumination homogeneity, without unduly restricting light utilization efficiency. In some aspects, a light extraction surface of each substrate portion includes protruding features and light extraction surface recesses. Lateral borders between different pixels are aligned with selected light extraction surface recesses. In some aspects, selected light extraction surface recesses extend through an entire thickness of the substrate. Other technical benefits may additionally or alternatively be achieved.Type: ApplicationFiled: August 3, 2020Publication date: December 31, 2020Inventor: Peter Scott Andrews
-
Patent number: 10879435Abstract: Light emitting diodes, components, and related methods, with improved performance over existing light emitting diodes. In some embodiments, light emitter devices included herein include a submount, a light emitter, a light affecting material, and a wavelength conversion component. Wavelength conversion components provided herein include a transparent substrate having an upper surface and a lower surface, and a phosphor compound disposed on the upper surface or lower surface, wherein the wavelength conversion component is configured to alter a wavelength of a light emitted from a light source when positioned proximate to the light source.Type: GrantFiled: February 21, 2020Date of Patent: December 29, 2020Assignee: Cree, Inc.Inventors: Peter Scott Andrews, Jesse Colin Reiherzer, Amber C. Abare
-
Publication number: 20200395404Abstract: Pixelated-LED chips and related methods are disclosed. A pixelated-LED chip includes an active layer with independently electrically accessible active layer portions arranged on or over a light-transmissive substrate. The active layer portions are configured to illuminate different light-transmissive substrate portions to form pixels. Various enhancements may beneficially provide increased contrast (i.e., reduced cross-talk between pixels) and/or promote inter-pixel illumination homogeneity, without unduly restricting light utilization efficiency. In some aspects, an underfill material with improved surface coverage is provided between adjacent pixels of a pixelated-LED chip. The underfill material may be arranged to cover all lateral surfaces between the adjacent pixels. In some aspects, discontinuous substrate portions are formed before application of underfill materials. In some aspects, a wetting layer is provided to improve wicking or flow of underfill materials during various fabrication steps.Type: ApplicationFiled: August 31, 2020Publication date: December 17, 2020Inventors: Peter Scott Andrews, Steven Wuester