Patents by Inventor Philip J. Kuekes

Philip J. Kuekes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080094051
    Abstract: A demultiplexed nanowire sensor array for detecting different chemical and biological species are provided, comprising a sensor array and a demultiplexer array. Methods of detecting at least two chemical and/or biological species are also provided, using the demultiplexed nanowire sensor array.
    Type: Application
    Filed: October 19, 2006
    Publication date: April 24, 2008
    Inventors: R. Stanley Williams, Philip J. Kuekes, Yong Chen
  • Publication number: 20080093217
    Abstract: A method of forming a plurality of NERS-active structures is disclosed. Particularly, a substrate having a surface and a liquid including nanoparticles is deposited on at least a portion of the surface of the substrate. At least one electric field may be generated proximate to the surface and at least a portion of the nanoparticles may be arranged via the electric field. A system includes at least two electrodes configured for producing at least one electric field for substantially arranging nanoparticles substantially according to a selected pattern. A NERS-active structure includes a substrate and a plurality of features located at predetermined positions on a surface of the substrate and at least one NERS-active nanoparticle at least partially embedded therein.
    Type: Application
    Filed: October 20, 2006
    Publication date: April 24, 2008
    Inventors: Wei Wu, R. Stanley Williams, Shih-Yuan Wang, Philip J. Kuekes, Zhiyong Li
  • Publication number: 20080094583
    Abstract: Techniques for modifying a visible projecting image are described. The technique includes using non-visible light to control optical properties of independent regions of an active screen. The non-visible light is capable of directly interacting with the regions of the active screen to modify an optical property of the regions of the active screen.
    Type: Application
    Filed: October 19, 2006
    Publication date: April 24, 2008
    Inventors: R. Stanley Williams, Philip J. Kuekes
  • Publication number: 20080089110
    Abstract: Various embodiments of the present invention are directed to crossbar-memory systems to methods for writing information to and reading information stored in such systems. In one embodiment of the present invention, a crossbar-memory system comprises a first layer of microscale signal lines, a second layer of microscale signal lines, a first layer of nanowires configured so that each first layer nanowire overlaps each first layer microscale signal line, and a second layer of nanowires configured so that each second layer nanowire overlaps each second layer microscale signal line and overlaps each first layer nanowire. The crossbar-memory system includes nonlinear-tunneling resistors configured to selectively connect first layer nanowires to first layer microscale signal lines and to selectively connect second layer nanowires to second layer microscale signal lines.
    Type: Application
    Filed: October 16, 2006
    Publication date: April 17, 2008
    Inventors: Warren Robinett, Philip J. Kuekes
  • Patent number: 7350132
    Abstract: One embodiment of the present invention provides a demultiplexer implemented as a nanowire crossbar or a hybrid nanowire/microscale-signal-line crossbar with resistor-like nanowire junctions. The demultiplexer of one embodiment provides demultiplexing of signals input on k microscale address lines to 2k or fewer nanowires, employing supplemental, internal address lines to map 2k nanowire addresses to a larger, internal, n-bit address space, where n>k. A second demultiplexer embodiment of the present invention provides demultiplexing of signals input on n microscale address lines to 2k nanowires, with n>k, using 2k, well-distributed, n-bit external addresses to access the 2k nanowires.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: March 25, 2008
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Philip J. Kuekes, J. Warren Robinett, Gadiel Seroussi, R. Stanley Williams
  • Patent number: 7343059
    Abstract: A photonic interconnect system avoids high capacitance electric interconnects by using optical signals to communicate data between devices. The system can provide massively parallel information output by mapping logical addresses to frequency bands, so that modulation of a selected frequency band can encode information for a specific location corresponding to the logical address. Wavelength-specific directional couplers, modulators, and detectors for the photonic interconnect system can be efficiently fabricated at defects in a photonic bandgap crystal.
    Type: Grant
    Filed: October 11, 2003
    Date of Patent: March 11, 2008
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Raymond G. Beausoleil, Philip J. Kuekes, William J. Munro, Timothy P. Spiller, Richard S. Williams, Sean D. Barrett
  • Patent number: 7342656
    Abstract: A NERS-active structure includes a deformable, active nanoparticle support structure for supporting a first nanoparticle and a second nanoparticle that is disposed proximate the first nanoparticle. The nanoparticles each comprise a NERS-active material. The deformable, active nanoparticle support structure is configured to vary the distance between the first nanoparticle and the second nanoparticle while performing NERS. Various active nanoparticle support structures are disclosed. A NERS system includes such a NERS-active structure, a radiation source for generating radiation scatterable by an analyte located proximate the NERS-active structure, and a radiation detector for detecting Raman scattered radiation scattered by the analyte.
    Type: Grant
    Filed: October 17, 2005
    Date of Patent: March 11, 2008
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: M. Saif Islam, Shih-Yuan Wang, R. Stanley Williams, Philip J. Kuekes, Wei Wu, Zhiyong Li
  • Publication number: 20080013393
    Abstract: One embodiment of the present invention is a method for constructing defect-and-failure-tolerant demultiplexers. This method is applicable to nanoscale, microscale, or larger-scale demultiplexer circuits. Demultiplexer circuits can be viewed as a set of AND gates, each including a reversibly switchable interconnection between a number of address lines, or address-line-derived signal lines, and an output signal line. Each reversibly switchable interconnection includes one or more reversibly switchable elements. In certain demultiplexer embodiments, NMOS and/or PMOS transistors are employed as reversibly switchable elements. In the method that represents one embodiment of the present invention, two or more serially connected transistors are employed in each reversibly switchable interconnection, so that short defects in up to one less than the number of serially interconnected transistors does not lead to failure of the reversibly switchable interconnection.
    Type: Application
    Filed: July 12, 2006
    Publication date: January 17, 2008
    Inventors: Warren Robinett, Philip J. Kuekes, R. Stanley Williams
  • Patent number: 7307448
    Abstract: Embodiments of the present invention implement computing circuits comprising a number of interconnectable nanoscale computational stages. Each nanoscale computational stage includes: (1) a nanoscale logic array; and (2) a number of nanoscale latch arrays interconnected with the configurable logic array. Each nanoscale computational stage receives signals and passes the signals through the nanoscale logic array and to a nanoscale latch array. Signals output from the nanoscale latch array can be routed to another nanoscale computational stage or out of the computing circuit.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: December 11, 2007
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Gregory S. Snider, Philip J. Kuekes
  • Patent number: 7307345
    Abstract: Various embodiments of the present invention are directed to crossbar array designs that interfaces wires to address wires, despite misalignments between electrical components and wires. In one embodiment, a nanoscale device may be composed of a first layer of two or more wires and a second layer of two or more address wires that overlays the first layer. The nanoscale device may also include an intermediate layer positioned between the first layer and the second layer. Two or more redundant electrical component patterns may be fabricated within the intermediate layer so that one or more of the electrical component patterns is aligned with the first and second layers.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: December 11, 2007
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Wei Wu, Philip J. Kuekes, R. Stanley Williams
  • Patent number: 7307271
    Abstract: A nano-colonnade structure-and methods of fabrication and interconnection thereof utilize a nanowire column grown nearly vertically from a (111) horizontal surface of a semiconductor layer to another horizontal surface of another layer to connect the layers. The nano-colonnade structure includes a first layer having the (111) horizontal surface; a second layer having the other horizontal surface; an insulator support between the first layer and the second layer that separates the first layer from the second layer. A portion of the second layer overhangs the insulator support, such that the horizontal surface of the overhanging portion is spaced from and faces the (111) horizontal surface of the first layer. The structure further includes a nanowire column extending nearly vertically from the (111) horizontal surface to the facing horizontal surface, such that the nanowire column connects the first layer to the second layer.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: December 11, 2007
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: M. Saif Islam, Philip J. Kuekes, Shih-Yuan Wang, Duncan R. Stewart, Shashank Sharma
  • Patent number: 7292384
    Abstract: Embodiments of the invention provide a system and method for providing a three-dimensional moving image display. In one embodiment, a display having a plurality of pixels is provided. In addition, a refractive index controller is provided for controlling a modifiable and reversible index of refraction of at least one of the pixels. The refractive index controller is used for modifying the index of refraction of the at least one of the pixels to a first extent to manipulate the phase of a first photon and to a second different extent to manipulate the phase of a second photon.
    Type: Grant
    Filed: May 11, 2005
    Date of Patent: November 6, 2007
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Philip J. Kuekes, R. Stanley Williams
  • Patent number: 7289690
    Abstract: An apparatus for sensing at least one property of a fluid is described. A first photonic crystal structure and a second photonic crystal structure are defined in a dielectric slab. The first and second photonic crystal structures comprise differently patterned arrays of channels extending through the dielectric slab. The apparatus further comprises a fluid introduction device configured to introduce a common volume of the fluid into the channels of the first and second photonic crystal structures. The at least one property of the fluid can be sensed by measuring the propagation of radiation through the first and second photonic crystal structures.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: October 30, 2007
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Zhiyong Li, Raymond G. Beausoleil, Philip J. Kuekes, Shih-Yuan Wang, M. Saif Islam
  • Patent number: 7256435
    Abstract: A mold with a protruding pattern is provided that is pressed into a thin polymer film via an imprinting process. Controlled connections between nanowires and microwires and other lithographically-made elements of electronic circuitry are provided. An imprint stamp is configured to form arrays of approximately parallel nanowires which have (1) micro dimensions in the X direction, (2) nano dimensions and nano spacing in the Y direction, and three or more distinct heights in the Z direction. The stamp thus formed can be used to connect specific individual nanowires to specific microscopic regions of microscopic wires or pads. The protruding pattern in the mold creates recesses in the thin polymer film, so the polymer layer acquires the reverse of the pattern on the mold. After the mold is removed, the film is processed such that the polymer pattern can be transferred on a metal/semiconductor pattern on the substrate.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: August 14, 2007
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Pavel Kornilovich, Yong Chen, Duncan Stewart, R. Stanley Williams, Philip J. Kuekes, Mehmet Fatih Yanik
  • Patent number: 7242215
    Abstract: Various embodiments of the present invention are directed to implementation and use of logic-state-storing, impedance-encoded nanoscale, impedance-encoded latches that store logic values as impedance states within nanoscale electronic circuits that employ impedance-driven logic. In certain of these embodiments, use of nanoscale, impedance-encoded latches together with nanoscale electronic circuits that employ impedance-driven logic avoids cumulative degradation of voltage margins along a cascaded series of logic circuits and provides for temporary storage of intermediate logic values, allowing for practical interconnection of nanowire-crossbar-implemented logic circuits through nanoscale, impedance-encoded latches to other nanowire-crossbar-implemented logic circuits in order to implement complex, nanoscale-logic-circuit pipelines, nanoscale-logic-circuit-based state machines, and other complex logic devices with various different interconnection topologies and corresponding functionalities.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: July 10, 2007
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Gregory S. Snider, Philip J. Kuekes
  • Patent number: 7242199
    Abstract: In various embodiments of the present invention, tunable resistors are introduced at the interconnect layer of integrated circuits in order to provide a for adjusting internal voltage and/or current levels within the integrated circuit to repair defective components or to configure the integrated circuit following manufacture. For example, when certain internal components, such as transistors, do not have specified electronic characteristics due to manufacturing defects, adjustment of the variable resistances of the tunable resistors included in the interconnect layer of integrated circuits according to embodiments of the present invention can be used to adjust internal voltage and/or levels in order to ameliorate the defective components. In other cases, the tunable resistors may be used as switches to configure integrated circuit components, including individual transistors and logic gates as well as larger, hierarchically structured functional modules and domains.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: July 10, 2007
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: R. Stanley Williams, Philip J Kuekes, Frederick A. Perner, Greg Snider, Duncan Stewart
  • Patent number: 7233711
    Abstract: A sensor includes traps that are adjacent to a waveguide and capable of holding a contaminant for an interaction with an evanescent field surrounding the waveguide. When held in a trap, a particle of the contaminant, which may be an atom, a molecule, a virus, or a microbe, scatters light from the waveguide, and the scattered light can be measured to detect the presence or concentration of the contaminant. Holding of the particles permits sensing of the contaminant in a gas where movement of the particles might otherwise be too fast to permit measurement of the interaction with the evanescent field. The waveguide, a lighting system for the waveguide, a photosensor, and a communications interface can all be fabricated on a semiconductor die to permit fabrication of an autonomous nanosensor capable of suspension in the air or a gas being sensed.
    Type: Grant
    Filed: May 11, 2005
    Date of Patent: June 19, 2007
    Assignee: Hewlett Packard Development Company, L.P.
    Inventors: Raymond G. Beausoleil, Philip J. Kuekes, R. Stanley Williams
  • Patent number: 7227379
    Abstract: One embodiment of the present invention is an array of nanoscale latches interconnected by a nanowire bus to form a latch array. Each nanoscale latch in the nanoscale-latch array serves as a nanoscale register, and is driven by a nanoscale control line. Primitive operations for the latch array can be defined as sequences of one or more inputs to one or more of the nanowire data bus and nanoscale control lines. In various latch-array embodiments of the present invention, information can be transferred from one nanoscale latch to another nanoscale latch in a controlled fashion, and sequences of information-transfer operations can be devised to implement arbitrary Boolean logic operations and operators, including NOT, AND, OR, XOR, NOR, NAND, and other such Boolean logic operators and operations, as well as input and output functions.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: June 5, 2007
    Assignee: Hewlett-Packard Develoment Company, L.P.
    Inventors: Gregory S. Snider, Philip J. Kuekes, Duncan R. Stewart
  • Patent number: 7205941
    Abstract: A composite material and related methods are described, the composite material being configured to exhibit a negative effective permittivity and/or a negative effective permeability for incident radiation at an operating wavelength, the composite material comprising an arrangement of electromagnetically reactive cells of small dimension relative to the operating wavelength. Each cell includes an externally powered gain element for enhancing a resonant response of that cell to the incident radiation at the operating wavelength.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: April 17, 2007
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Shih-Yuan Wang, Philip J Kuekes, Wei Wu, Joseph Straznicky, M. Saiful Islam
  • Patent number: 7194609
    Abstract: The invention is a system and method for executing programs. The invention involves a plurality of processing elements, wherein a processing element of the plurality of processing elements generates a branch command. The invention uses a programmable network that transports the branch command from the processing element to one of a first destination processing element by a first programmed transport route and a second destination processing element by a second programmed transport route. The branch command is received and processed by one of the first destination processing element and the second destination processing element, and is not processed by the other of the first processing element and the second processing element.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: March 20, 2007
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Michael S. Schlansker, Boon Seong Ang, Philip J. Kuekes