Patents by Inventor Philip J. Oldiges

Philip J. Oldiges has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080128766
    Abstract: A MOSFET structure and method of fabricating the structure incorporates a multi-layer sidewall spacer to suppress parasitic overlap capacitance between the gate conductor and the source/drain extensions without degrading drive current and, thereby, effecting overall MOSFET performance. The multi-layer sidewall spacer is formed with a gap layer having a dielectric constant equal to one and a permeable low-K (e.g., less than 3.5) dielectric layer. Alternatively, the multi-layer sidewall spacer is formed with a first L-shaped dielectric layer having a permittivity value of less than approximately three and a second dielectric layer. The multi-layer spacer may also have a third nitride or oxide spacer layer. This third spacer layer provides increased structural integrity.
    Type: Application
    Filed: February 14, 2008
    Publication date: June 5, 2008
    Applicant: International Business Machines Corporation
    Inventors: Elbert E. Huang, Philip J. Oldiges, Ghavam G. Shahidi, Christy S. Tyberg, Xinlin Wang, Robert L. Wisnieff
  • Patent number: 7365378
    Abstract: A MOSFET structure and method of fabricating the structure incorporates a multi-layer sidewall spacer to suppress parasitic overlap capacitance between the gate conductor and the source/drain extensions without degrading drive current and, thereby, effecting overall MOSFET performance. The multi-layer sidewall spacer is formed with a gap layer having a dielectric constant equal to one and a permeable low-K (e.g., less than 3.5) dielectric layer. Alternatively, the multi-layer sidewall spacer is formed with a first L-shaped dielectric layer having a permittivity value of less than approximately three and a second dielectric layer. The multi-layer spacer may also have a third nitride or oxide spacer layer. This third spacer layer provides increased structural integrity.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: April 29, 2008
    Assignee: International Business Machines Corporation
    Inventors: Elbert E. Huang, Philip J. Oldiges, Ghavam G. Shahidi, Christy S. Tyberg, Xinlin Wang, Robert L. Wisnieff
  • Patent number: 7348641
    Abstract: A gated semiconductor device is provided, in which the body has a first dimension extending in a lateral direction parallel to a major surface of a substrate, and second dimension extending in a direction at least substantially vertical and at least substantially perpendicular to the major surface, the body having a first side and a second side opposite the first side. The gated semiconductor device includes a first gate overlying the first side, and having a first gate length in the lateral direction. The gated semiconductor device further includes a second gate overlying the second side, the second gate having a second gate length in the lateral direction which is different from, and preferably shorter than the first gate length. In one embodiment, the first gate and the second gate being electrically isolated from each other. In another embodiment the first gate consists essentially of polycrystalline silicon germanium and the second gate consists essentially of polysilicon.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: March 25, 2008
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Bruce B. Doris, Xinlin Wang, Jochen Beintner, Ying Zhang, Philip J. Oldiges
  • Publication number: 20080016477
    Abstract: A method of modeling soft errors in a logic circuit uses two separate current sources inserted at the source and drain of a device to simulate a single event upset (SEU) caused by, e.g., an alpha-particle strike. In an nfet implementation the current flows from the source or drain toward the body of the device. Current waveforms having known amplitudes are injected at the current sources while simulating operation of the logic circuit and the state of the logic circuit is determined from the simulated operation. The amplitudes of the current waveforms can be independently adjusted. The simulator monitors the state of device and makes a log entry when a transition occurs. The process may be repeated for other devices in the logic circuit to provide an overall characterization of the susceptibility of the circuit to soft errors.
    Type: Application
    Filed: July 13, 2006
    Publication date: January 17, 2008
    Inventors: AJ Kleinosowski, Philip J. Oldiges, Paul M. Solomon, Richard Q. Williams
  • Patent number: 7315075
    Abstract: Disclosed is a semiconductor structure that incorporates a capacitor for reducing the soft error rate of a device within the structure. The multi-layer semiconductor structure includes an insulator-filled deep trench isolation structure that is formed through an active silicon layer, a first insulator layer, and a first bulk layer and extends to a second insulator layer. The resulting isolated portion of the first bulk layer defines the first capacitor plate. A portion of the second insulator layer that is adjacent the first capacitor plate functions as the capacitor dielectric. Either the silicon substrate or a portion of a second bulk layer that is isolated by a third insulator layer and another deep trench isolation structure can function as the second capacitor plate. A first capacitor contact couples, either directly or via a wire array, the first capacitor plate to a circuit node of the device in order to increase the critical charge, Qcrit, of the circuit node.
    Type: Grant
    Filed: January 26, 2005
    Date of Patent: January 1, 2008
    Assignee: International Business Machines Corporation
    Inventors: John M Aitken, Ethan H. Cannon, Philip J. Oldiges, Alvin W. Strong
  • Patent number: 7220626
    Abstract: The present invention provides a method of forming a semiconducting substrate including the steps of providing an initial structure having first device region comprising a first orientation material and a second device region having a second orientation material; forming a first concentration of lattice modifying material atop the first orientation material; forming a second concentration of the lattice modifying material atop the second orientation material; intermixing the first concentration of lattice modifying material with the first orientation material to produce a first lattice dimension surface and the second concentration of lattice modifying material the second orientation material to produce a second lattice dimension surface; and forming a first strained semiconducting layer atop the first lattice dimension surface and a second strained semiconducting layer atop the second lattice dimension surface.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: May 22, 2007
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Bruce B. Doris, Philip J. Oldiges, Meikei Ieong, Min Yang, Huajie Chen
  • Patent number: 7064414
    Abstract: A structure and associated method for annealing a trapped charge from a semiconductor device. The semiconductor structure comprises a substrate and a first heating element. The substrate comprises a bulk layer, an insulator layer and a device layer. The first heating element is formed within the bulk layer. A first side of the first heating element is adjacent to a first portion of the insulator layer. The first heating element is adapted to be selectively activated to generate thermal energy to heat the first portion of the insulator layer and anneal a trapped electrical charge from the first portion of the insulator layer.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: June 20, 2006
    Assignee: International Business Machines Corporation
    Inventors: John M Aitken, Ethan H. Cannon, Philip J. Oldiges, Alvin W. Strong
  • Patent number: 6924517
    Abstract: A field effect transistor (FET), integrated circuit (IC) chip including the FETs and a method of forming the FETS. The devices have a thin channel, e.g., an ultra-thin (smaller than or equal to 10 nanometers (10 nm)) silicon on insulator (SOI) layer. Source/drain regions are located in recesses at either end of the thin channel and are substantially thicker (e.g., 30 nm) than the thin channel. Source/drain extensions and corresponding source/drain regions are self aligned to the FET gate and thin channel.
    Type: Grant
    Filed: August 26, 2003
    Date of Patent: August 2, 2005
    Assignee: International Business Machines Corporation
    Inventors: Huajie Chen, Bruce B. Doris, Philip J. Oldiges, Xinlin Wang, Huilong Zhu