Patents by Inventor Pouya Hashemi

Pouya Hashemi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12225835
    Abstract: Embodiments of the invention are directed to a structure that includes a resistive switching device (RSD). The RSD includes a first terminal having an outer sidewall surface; a second terminal; an active region having a switchable conduction state; and a first protective layer on the outer sidewall surface of the first terminal.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: February 11, 2025
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Ruilong Xie, Alexander Reznicek, Pouya Hashemi
  • Patent number: 12191352
    Abstract: Embodiments of the invention are directed to a transistor device that includes a channel stack having stacked, spaced-apart, channel layers. A first source or drain (S/D) region is communicatively coupled to the channel stack. A tunnel extends through the channel stack, wherein the tunnel includes a central region and a first set of end regions. The first set of end regions is positioned closer to the first S/D region than the central region is to the first S/D region. A first type of work-function metal (WFM) is formed in the first set of end regions, the first WFM having a first work-function (WF). A second type of WFM is formed in the central region, the second type of WFM having a second WF, wherein the first WF is different than the second WF.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: January 7, 2025
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Ruilong Xie, Pouya Hashemi, Alexander Reznicek
  • Patent number: 12136671
    Abstract: Channel engineering is employed to obtain a gate-all-around field-effect transistor having an asymmetric threshold voltage. A dual channel profile enables a steep potential distribution near the source side that enhances the lateral channel electric field and thus increases the carrier mobility.
    Type: Grant
    Filed: December 31, 2021
    Date of Patent: November 5, 2024
    Assignee: International Business Machines Corporation
    Inventors: Jingyun Zhang, Choonghyun Lee, Takashi Ando, Pouya Hashemi, Alexander Reznicek
  • Publication number: 20240319584
    Abstract: A semiconductor structure includes a plurality of mandrel structures disposed above and in contact with a substrate. Each of the plurality of mandrel structures extending outwardly at an inclination angle with respect to a surface plane of the substrate that is different from 90 degrees. A template structure for an imprint mask is formed by the plurality of mandrel structures. The semiconductor structure further includes a layer of a conformal dielectric material covering the plurality of mandrel structures for providing stability and uniformity to the plurality of mandrel structures.
    Type: Application
    Filed: March 23, 2023
    Publication date: September 26, 2024
    Inventors: Pouya Hashemi, Steven Holmes, Robert L. Bruce, Eric A. Joseph, Yanning Sun
  • Publication number: 20240319591
    Abstract: A semiconductor structure includes a first plurality of slanted features within a first region of a substrate. Two or more magnetic guiding structures are embedded within the first region of the substrate. The first plurality of slanted features is located between the two or more magnetic guiding structures for varying a magnetic field strength around the first plurality of slanted features. A second plurality of slanted features are located within a second region of the substrate. The second region of the substrate is adjacent to the first region of the substrate. The second plurality of slanted features include a second orientation angle that is different from a first orientation angle of the first plurality of slanted features.
    Type: Application
    Filed: March 23, 2023
    Publication date: September 26, 2024
    Inventors: Steven Holmes, Pouya Hashemi, Robert L. Bruce, Eric A. Joseph, Yanning Sun
  • Patent number: 12063867
    Abstract: An approach to provide a structure of a double magnetic tunnel junction device with two spacers that includes a bottom magnetic tunnel junction stack, a spin conducting layer on the bottom magnetic tunnel junction stack, a top magnetic tunnel junction stack on the spin conduction layer, a first dielectric spacer on sides of the top magnetic tunnel junction stack and a portion of a top surface of the spin conduction layer, and a second dielectric spacer on the first spacer. The double magnetic tunnel device includes the top magnetic tunnel junction stack with a width that is less than the width of the bottom magnetic tunnel junction stack.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: August 13, 2024
    Assignee: International Business Machines Corporation
    Inventors: Pouya Hashemi, Chandrasekharan Kothandaraman, Nathan P. Marchack
  • Patent number: 12020736
    Abstract: A spin-orbit torque magnetoresistive random-access memory device formed by forming an array of transistors, where a column of the array includes a source line contacting the source contact of each transistor of the column, forming a spin-orbit-torque (SOT) line contacting the drain contacts of the transistors of the row, and forming an array of unit cells, each unit cell including a spin-orbit-torque (SOT) magnetoresistive random access memory (MRAM) cell stack disposed above and in electrical contact with the SOT line, where the SOT-MRAM cell stack includes a free layer, a tunnel junction layer, and a reference layer, a diode structure above and in electrical contact with the SOT-MRAM cell stack, an upper electrode disposed above and in electrical contact with the diode structure.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: June 25, 2024
    Assignee: International Business Machines Corporation
    Inventors: Daniel Worledge, Pouya Hashemi, John Kenneth DeBrosse
  • Patent number: 11980039
    Abstract: A semiconductor device including a second magnetic tunnel junction stack aligned above a spin conductor layer above a first magnetic junction stack, a sidewall dielectric surrounding the second magnetic tunnel junction stack, a vertical side surface of the sidewall dielectric is aligned with vertical side surfaces of the spin conductor layer and the first magnetic junction stack. A method including forming a first magnetic tunnel junction stack, a spin conductor layer and a second magnetic tunnel junction stack, patterning the second magnetic tunnel junction stack, while not patterning the spin conductor layer and the first magnetic tunnel junction stack, forming a sidewall dielectric and a polymer layer on the sidewall dielectric. A method including patterning a second magnetic tunnel junction stack, while not patterning a spin conductor layer below the second magnetic tunnel junction stack nor a first magnetic tunnel junction stack below the spin conductor layer.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: May 7, 2024
    Assignee: International Business Machines Corporation
    Inventors: Nathan P. Marchack, Chandrasekharan Kothandaraman, Pouya Hashemi
  • Patent number: 11972785
    Abstract: A memory structure, i.e., magnetoresistive random access memory (MRAM) structure, is provided that includes a seeding area including at least a tunnel barrier seed layer located beneath a chemical templating layer that is wider than the magnetic tunnel junction (MTJ) structure that is located on the chemical templating layer. Redeposited metallic material is located on at least a sidewall of the tunnel barrier seed layer of the seeding area so as to shunt that area of the structure. The memory structure has reduced resistance with minimal tunnel magnetoresistance (TMR) loss penalty.
    Type: Grant
    Filed: November 15, 2021
    Date of Patent: April 30, 2024
    Assignee: International Business Machines Corporation
    Inventors: Pouya Hashemi, Jonathan Zanhong Sun, Guohan Hu, Saba Zare
  • Publication number: 20240112712
    Abstract: A magnetic random access memory (MRAM) apparatus includes a magnetic tunnel junction (MTJ) stack; a spin-orbit-torque (SOT) layer that underlies the MTJ stack; and a dielectric pillar that underlies the SOT layer and the MTJ stack. The SOT layer has a stepped profile.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Pouya Hashemi, Christopher SAFRANSKI
  • Publication number: 20240107896
    Abstract: A magnetoresistive random access memory (MRAM) structure is provided that includes a chiral spin-orbit-torque (SOT) metal bottom electrode under the bottom magnetic free layer where the chiral SOT metal bottom electrode is surrounded by a via dielectric. The chiral SOT metal bottom electrode enables the charge current, spin current and spin polarization directions to be in the same direction which is perpendicular to the surface of the chiral SOT via structure.
    Type: Application
    Filed: September 27, 2022
    Publication date: March 28, 2024
    Inventors: Pouya Hashemi, Jonathan Zanhong Sun
  • Publication number: 20240105244
    Abstract: Embodiments are disclosed for a three-terminal spin-orbit-torque (SOT) magnetoresistive random access memory (MRAM) device. The three-terminal SOT MRAM device includes a first type field effect transistor (FET) that drives an SOT line. Additionally, the first type FET includes a write gate in electrical contact with a write wordline (WWL). Further, the device also includes a second type FET in electrical contact with a magnetic tunnel junction (MTJ). Also, the second type FET comprises a read gate in electrical contact with a read wordline (RWL). Additionally, the first type FET is disposed above the second type FET. Further, the three-terminal SOT MRAM device provides a density of three contacted poly pitch (CPP) per two cells.
    Type: Application
    Filed: September 28, 2022
    Publication date: March 28, 2024
    Inventors: Pouya Hashemi, Ruilong Xie
  • Patent number: 11937512
    Abstract: A semiconductor device including a magnetic tunnel junction stack, a metallic hard mask aligned above the magnetic tunnel junction stack and an air gap surrounding the metallic hard mask. A method including forming a magnetic tunnel junction stack, forming a metallic hard mask aligned above the magnetic tunnel junction stack, conformally forming a dielectric over the metallic hard mask and the magnetic tunnel junction stack, forming barrier on vertical side surfaces of the dielectric, and removing the dielectric between the metallic hard mask and the barrier. A method including forming a magnetic tunnel junction stack, forming a metallic hard mask aligned above the magnetic tunnel junction stack, conformally forming a dielectric over the metallic hard mask and the magnetic tunnel junction stack, selectively removing a portion of the dielectric surrounding the metallic hard mark.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: March 19, 2024
    Assignee: International Business Machines Corporation
    Inventors: Chandrasekharan Kothandaraman, Nathan P. Marchack, Pouya Hashemi
  • Publication number: 20240090339
    Abstract: Embodiments of the present disclosure relate to a semiconductor device. The semiconductor device includes a bottom electrode, a magnetic tunnel junction (MTJ) stack on the bottom electrode, and a top electrode on the MTJ stack. At least one of the bottom electrode and the top electrode includes doped SiGeSn.
    Type: Application
    Filed: September 13, 2022
    Publication date: March 14, 2024
    Inventors: Pouya Hashemi, Alexander Reznicek
  • Patent number: 11915734
    Abstract: A spin-orbit torque magnetoresistive random-access memory device formed by fabricating a spin-Hall-effect (SHE) layer above and in electrical contact with a transistor, forming a spin-orbit-torque (SOT) magnetoresistive random access memory (MRAM) cell stack disposed above and in electrical contact with the SHE rail, wherein the SOT-MRAM cell stack comprises a free layer, a tunnel junction layer, and a reference layer, forming a cylindrical diode structure above and in electrical contact with the SOT-MRAM cell stack, forming a write line disposed in electrical contact with the SHE rail, and forming a read line disposed above and adjacent to an outer cylindrical electrode of the diode structure.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: February 27, 2024
    Assignee: International Business Machines Corporation
    Inventors: Pouya Hashemi, Takashi Ando, Alexander Reznicek
  • Patent number: 11855148
    Abstract: The embodiments herein describe a vertical field effect transistor (FET) with a gate that includes different work function metals (WFMs). Each WFM can be made up of one material (or one layer) or multiple materials forming multiple layers. In any case, the gate includes at least two different WFMs. For example, a first WFM may have a different material or layer than a second WFM in the gate, or one layer of the first WFM may have a different thickness than a corresponding layer in the second WFM. Having different WFMs in the gate can reduce the gate induced drain leakage (GIDL) in the FET.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: December 26, 2023
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Ruilong Xie, Pouya Hashemi, Alexander Reznicek
  • Patent number: 11844284
    Abstract: A method of manufacturing and resultant device are directed to an inverted wide-base double magnetic tunnel junction device having both high-efficiency and high-retention arrays. The method includes a method of manufacturing, on a common stack, a high-efficiency array and a high-retention array for an inverted wide-base double magnetic tunnel junction device. The method comprises, for the high-efficiency array and the high-retention array, forming a first magnetic tunnel junction stack (MTJ2), forming a spin conducting layer on the MTJ2, and forming a second magnetic tunnel junction stack (MTJ1) on the spin conducting layer. The first magnetic tunnel junction stack for the high-retention array has a high-retention critical dimension (CD) (HRCD) that is larger than a high-efficiency CD (HECD) of the first magnetic tunnel junction stack for the high-efficiency array. The second magnetic tunnel junction stack (MTJ1) is shorted for the high-retention array and is not shorted for the high-efficiency array.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: December 12, 2023
    Assignee: International Business Machines Corporation
    Inventors: Pouya Hashemi, Chandrasekharan Kothandaraman
  • Patent number: 11830877
    Abstract: Embodiments of the invention are directed to a configuration of nanosheet FET devices in a first region of a substrate. Each of the nanosheet FET devices in the first region includes a first channel nanosheet, a second channel nanosheet over the first channel nanosheet, a first gate structure around the first channel nanosheet, and a second gate structure around the second channel nanosheet, wherein the first gate structure and the second gate structure pinch off in a pinch off area between the first gate structure and the second gate structure. The first gate structure includes a doped region, and the second gate structure includes a doped region. At least a portion of the pinch off area is undoped.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: November 28, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Jingyun Zhang, Choonghyun Lee, Pouya Hashemi, Alexander Reznicek
  • Publication number: 20230352590
    Abstract: A semiconductor device includes a semiconductor substrate and a field effect transistor disposed on the semiconductor substrate. The field effect transistor includes a vertical fin defining a longitudinal length along a first axis, a width along a second axis and a vertical height along a third axis. The vertical fin includes source and drain regions separated by a gate region and a gate structure over the gate region. The gate structure includes a dipole layer and a gate electrode layer over the dipole layer. A first longitudinal section of the gate structure includes the dipole layer and a second longitudinal section of the gate structure is devoid of the dipole layer.
    Type: Application
    Filed: July 11, 2023
    Publication date: November 2, 2023
    Inventors: Takashi Ando, Alexander Reznicek, Pouya Hashemi, Ruilong Xie
  • Patent number: RE49954
    Abstract: A method of forming two or more nano-sheet devices with varying electrical gate lengths, including, forming at least two cut-stacks including a plurality of sacrificial release layers and at least one alternating nano-sheet channel layer on a substrate, removing a portion of the plurality of sacrificial release layers to form indentations having an indentation depth in the plurality of sacrificial release layers, and removing a portion of the at least one alternating nano-sheet channel layer to form a recess having a recess depth in the at least one alternating nano-sheet channel layers, where the recess depth is greater than the indentation depth.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: April 30, 2024
    Assignee: TESSERA LLC
    Inventors: Karthik Balakrishnan, Kangguo Cheng, Pouya Hashemi, Alexander Reznicek