Patents by Inventor Pouya Hashemi

Pouya Hashemi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11189782
    Abstract: A multilayered bottom electrode for a magnetic tunnel junction (MTJ) containing device is provided that includes, from bottom to top, a base segment having a first diameter and composed of a remaining portion of a first bottom electrode metal-containing layer, a middle segment having a second diameter and composed of a remaining portion of a second bottom electrode metal-containing layer, and an upper segment having a third diameter and composed of a remaining portion of a third bottom electrode metal-containing layer, wherein the first diameter is greater than the second diameter, and the third diameter is equal to, or less than, the second diameter. The wider base segment of each multilayered bottom electrode prevents tilting and/or bowing of the resultant bottom electrode. Thus, a stable bottom electrode is provided.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: November 30, 2021
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Thitima Suwannasiri, Nathan P. Marchack, Pouya Hashemi
  • Patent number: 11189712
    Abstract: A method for manufacturing a semiconductor device includes forming a plurality of fins on a substrate. The plurality of fins each include a first portion having a first width, and a second portion having a second width greater than the first width. The method also includes forming a sacrificial layer on the substrate in a space between a first fin and a second fin of the plurality of fins, wherein the first fin and the second fin correspond to a vertical transistor. In the method, lower portions of the first and second fins are removed, and an epitaxial region is formed under remaining portions of the first and second fins. The sacrificial layer is removed from the space between the first fin and the second fin after forming the epitaxial region.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: November 30, 2021
    Assignee: International Business Machines Corporation
    Inventors: Ruilong Xie, Alexander Reznicek, Takashi Ando, Pouya Hashemi
  • Patent number: 11187672
    Abstract: A method for making a hydrophobic biosensing device includes forming alternating layers over a top and sides of a fin on a dielectric layer to form a stack of layers. The stack of layers are planarized to expose the top of the fin. The fin and every other layer are removed to form a cathode group of fins and an anode group of fins. A hydrophobic surface on the two groups of fins.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: November 30, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Karthik Balakrishnan, Stephen W. Bedell, Pouya Hashemi, Bahman Hekmatshoartabari, Alexander Reznicek
  • Patent number: 11189661
    Abstract: A first fin field effect transistor (FinFET) has an internal source/drain (S/D) with a facetted face that is connected to a dielectric side of a first RRAM. A second FinFET and RRAM structure are also disclosed. In some embodiments, an electrode contact side of each RRAM is connected in common to form a 2T2R device. The locations of one or more electrode points on the diamond-shaped, facetted surface of the bottom electrode accurately position electric fields through the dielectric to accurately and repeatably locate where the filaments/current paths are formed (or reset) through the RRAM dielectric. Material selection and accurate thickness of the RRAM dielectric determine the voltage at which the filaments/current paths are formed (or reset).
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: November 30, 2021
    Assignee: International Business Machines Corporation
    Inventors: Alexander Reznicek, Takashi Ando, Pouya Hashemi, Choonghyun Lee, Jingyun Zhang
  • Patent number: 11183632
    Abstract: A resistive random access memory (RRAM) structure includes top and bottom electrodes electrically coupled with first and second metal connection lines, respectively, the first and second metal connection lines providing electrical connection to the RRAM structure. A layer of resistive switching material is disposed between the top and bottom electrodes of the RRAM structure. The resistive switching material exhibits a measurable change in resistance under influence of at least an electric field and/or heat. Dielectric spacers are formed on sidewalls of at least the bottom electrode of the RRAM structure. The RRAM structure further includes a passivation layer formed on an upper surface of the dielectric spacers and covering at least a portion of sidewalls of the top electrode. The passivation layer is self-aligned with the first metal connection line.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: November 23, 2021
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Ruilong Xie, Pouya Hashemi, Alexander Reznicek
  • Patent number: 11165017
    Abstract: A replacement bottom electrode structure process is provided in which a patterned stack containing a MTJ pillar and a top electrode structure is fabricated and passivated on a sacrificial dielectric material plug that is embedded in a dielectric capping layer. The sacrificial dielectric material plug is then removed and replaced with a bottom electrode structure. The replacement bottom electrode structure process of the present application allows the MTJ patterning to be misalignment tolerate and fully eliminates the potential yield loss from the bottom electrode structure.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: November 2, 2021
    Assignee: International Business Machines Corporation
    Inventors: Pouya Hashemi, Takashi Ando, Dimitri Houssameddine, Alexander Reznicek, Jingyun Zhang, Choonghyun Lee
  • Patent number: 11158715
    Abstract: An FET comprises a source, a drain, a channel, and a gate encompassing the channel. The channel has a first region that is thinner than in a second region. The Threshold Voltage, Vth, is larger in the first region than in the second region causing an asymmetric Vth across the length of the channel. Modeling has shown that the Vth increases along the channel from about 50 milliVolts (mV) for N-FETs (about 55 mV for a P-FETs) to about 125 mV for N-FETs (about 180 mV for P-FETs) as the channel width decreases from 4 nanometers (nm) to 2 nm.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: October 26, 2021
    Assignee: International Business Machines Corporation
    Inventors: Choonghyun Lee, Takashi Ando, Jingyun Zhang, Pouya Hashemi, Alexander Reznicek
  • Publication number: 20210328013
    Abstract: A method for manufacturing a semiconductor device includes forming a plurality of first and second silicon germanium layers, and a plurality of silicon layers in a stacked configuration. The stacked configuration includes a repeating arrangement of a silicon layer stacked on an arrangement of at least one of the first and at least two of the second silicon germanium layers. The first and second silicon germanium layers are etched from exposed lateral sides, and plurality of first inner spacers are formed adjacent remaining portions of the first and second silicon germanium layers. Parts of the remaining portions of the second germanium layers are positioned between the first inner spacers and the silicon layers. The method also includes forming a plurality of second inner spacers, and removing the remaining portions of the first and second silicon germanium layers, leaving spaces between the first inner spacers and the silicon layers.
    Type: Application
    Filed: April 17, 2020
    Publication date: October 21, 2021
    Inventors: Takashi Ando, Ruilong Xie, Alexander Reznicek, Pouya Hashemi
  • Patent number: 11152510
    Abstract: A strained relaxed silicon germanium alloy buffer layer is employed in the present application to induce a tensile stain on each suspended semiconductor channel material nanosheet within a nanosheet material stack that is present in a long channel device region of a semiconductor substrate. The induced tensile strain keeps the suspended semiconductor channel material nanosheets that are present in long channel device region essentially straight in a lateral direction. Hence, reducing and even eliminating the sagging effect that can be caused by surface tension.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: October 19, 2021
    Assignee: International Business Machines Corporation
    Inventors: Jingyun Zhang, Takashi Ando, Choonghyun Lee, Pouya Hashemi, Alexander Reznicek
  • Patent number: 11152563
    Abstract: A dielectric material structure is formed laterally adjacent to a bottom portion of a bottom electrode metal-containing portion that extends upward from an electrically conductive structure that is embedded in an interconnect dielectric material layer. The physically exposed top portion of the bottom electrode metal-containing portion is then trimmed to provide a bottom electrode of unitary construction (i.e., a single piece) that has a lower portion having a first diameter and an upper portion that has a second diameter that is greater than the first diameter. The presence of the dielectric material structure prevents tilting and/or bowing of the resultant bottom electrode. Thus, a stable bottom electrode is provided.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: October 19, 2021
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Eileen A. Galligan, Nathan P. Marchack, Pouya Hashemi
  • Publication number: 20210296463
    Abstract: An embodiment of the invention may include a method for of forming a semiconductor device and the resulting device. The method may include forming a gate dielectric on a gate region of a substrate. The method may include forming an inner dummy gate on a first portion of the gate dielectric. The method may include forming an outer dummy gate adjacent to the inner dummy gate on a second portion of the gate dielectric. The method may include forming spacers adjacent to the outer dummy gate. The method may include removing the outer dummy gate and depositing a first work function metal. The method may include removing the inner dummy gate and depositing a second work function metal.
    Type: Application
    Filed: March 17, 2020
    Publication date: September 23, 2021
    Inventors: Ruilong Xie, Takashi Ando, Alexander Reznicek, Pouya Hashemi
  • Publication number: 20210296574
    Abstract: A method of manufacturing a magnetic tunnel junction device is provided. The method includes forming an MTJ stack including a reference layer, a tunnel barrier layer formed on the reference layer, a free layer formed on the barrier layer, and a cap layer formed on the free layer. The method also includes performing ion beam etching (IBE) through each layer of the MTJ stack to form at least one MTJ pillar. The method also includes forming an isolation layer on sidewalls of at least the tunnel barrier layer, the isolation layer comprising a same material as that of the tunnel barrier layer. A combined width of the isolation layer and the tunnel barrier layer is equal to or greater than a width of at least one of the reference layer and the free layer.
    Type: Application
    Filed: March 23, 2020
    Publication date: September 23, 2021
    Inventors: Alexander Reznicek, MATTHIAS GEORG GOTTWALD, Pouya Hashemi, Bruce B. Doris
  • Publication number: 20210288246
    Abstract: A method of manufacturing a double magnetic tunnel junction device is provided. The method includes forming a first magnetic tunnel junction stack, forming a spin conducting layer on the first magnetic tunnel junction stack, and forming a second magnetic tunnel junction stack on the spin conducting layer. The second magnetic tunnel junction stack has a width that is greater than a width of the first magnetic tunnel junction stack.
    Type: Application
    Filed: March 13, 2020
    Publication date: September 16, 2021
    Inventors: Pouya Hashemi, Bruce B. Doris, Janusz Jozef Nowak, Jonathan Zanhong Sun
  • Patent number: 11121311
    Abstract: A magnetic tunnel junction (MTJ) containing device is provided in which a conformal dielectric encapsulation liner is located on a sidewall of each of a MTJ pillar and an overlying top electrode, and a non-conformal dielectric encapsulation liner is located on the conformal dielectric encapsulation liner. This dual encapsulation liner structure prevents the bottom electrode of the MTJ containing device from being physically exposed thus eliminating the possibility that the bottom electrode can be a source of resputtered conductive metal particles that can deposit on a sidewall of the MTJ pillar. As such, electrical shorting is reduced in the MTJ containing device of the present application. Also, the dual encapsulation liner structure can mitigate chemical diffusion into the tunnel barrier material of the MTJ pillar.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: September 14, 2021
    Assignee: International Business Machines Corporation
    Inventors: Nathan P. Marchack, Bruce B. Doris, Pouya Hashemi
  • Patent number: 11088139
    Abstract: A method is presented for triggering asymmetric threshold voltage along a channel of a vertical transport field effect transistor (VTFET). The method includes constructing a first set fins from a first material, constructing a second set of fins from a second material, forming a source region between the first set of fins, and forming a drain region between the second set of fins, the source region composed of a different material than the drain region. The method further includes depositing a first high-k metal gate over the first set of fins and depositing a second high-k metal gate over the second set of fins, the second high-k metal gate being different than the first high-k metal gate such that the asymmetric threshold voltage is present along the channel of the VTFET in a region defined at the bottom of the first and second set of fins.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: August 10, 2021
    Assignee: International Business Machines Corporation
    Inventors: Choonghyun Lee, Jingyun Zhang, Takashi Ando, Alexander Reznicek, Pouya Hashemi
  • Patent number: 11088205
    Abstract: A method is presented for integrating a resistive random access memory (ReRAM) device with vertical transistors on a single chip. The method includes forming a vertical field effect transistor (FET) including an epitaxial tip defining a drain terminal and forming the ReRAM device in direct contact with the epitaxial tip of the vertical FET such that a current conducting filament is formed at the epitaxial tip due to electric field enhancement.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: August 10, 2021
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Pouya Hashemi, Alexander Reznicek
  • Publication number: 20210233960
    Abstract: A method for fabricating stacked resistive memory with individual switch control is provided. The method includes forming a first random access memory (ReRAM) device. The method further includes forming a second ReRAM device in a stacked nanosheet configuration on the first ReRAM device. The method also includes forming separate gate contacts for the first ReRAM device and the second ReRAM device.
    Type: Application
    Filed: April 14, 2021
    Publication date: July 29, 2021
    Inventors: Takashi Ando, Jingyun Zhang, Pouya Hashemi, Alexander Reznicek, Choonghyun Lee
  • Publication number: 20210233818
    Abstract: Semiconductor devices and methods of forming the same include forming first recesses in a first stack of alternating sacrificial layers and channel layers. A first inner spacer sub-layer is formed in the first recesses from a first dielectric material. A second inner spacer sub-layer is formed in the first recesses from a second dielectric material, different from the first dielectric material. The sacrificial layers and the first inner spacer sub-layer are replaced with a gate stack in contact with the second inner spacer sub-layer.
    Type: Application
    Filed: April 16, 2021
    Publication date: July 29, 2021
    Inventors: Takashi Ando, Jingyun Zhang, Choonghyun Lee, Pouya Hashemi
  • Patent number: 11075301
    Abstract: A semiconductor structure including a nanosheet stack on a silicon germanium on insulator substrate, the nanosheet stack including alternating layers of a sacrificial semiconductor material and a semiconductor channel material vertically aligned and stacked one on top of another, a gate conductor orthogonal to the nanosheet stack and wrapping around the semiconductor channel material layers of the nanosheet stack, and a gate contact on the gate conductor layer adjacent to the nanosheet stack.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: July 27, 2021
    Assignee: International Business Machines Corporation
    Inventors: Jingyun Zhang, Choonghyun Lee, Takashi Ando, Alexander Reznicek, Pouya Hashemi
  • Publication number: 20210217846
    Abstract: A semiconductor device including at least one nanosheet and epitaxial source and drain regions are present on opposing ends of the at least one nanosheet. A gate structure is present on a channel of the at least one nanosheet. The gate structure includes a first work function metal gate portion present at a junction portion of the source and drain regions that interfaces with the channel portion of the at least one nanosheet, and a second work function metal gate portion present on a central portion of the channel of the at least one nanosheet. The amount of metal containing nitride in the second work function metal gate portion is greater than an amount of metal containing nitride in the first work function metal gate portion. The device further includes a rotated T-shaped dielectric spacer present between the gate structure and the epitaxial source and drain regions.
    Type: Application
    Filed: January 15, 2020
    Publication date: July 15, 2021
    Inventors: Pouya Hashemi, Takashi Ando, Alexander Reznicek, Ruilong Xie