Patents by Inventor Qingchun Zhang

Qingchun Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9318624
    Abstract: The present disclosure relates to a Schottky diode having a drift layer and a Schottky layer. The drift layer is predominantly doped with a doping material of a first conductivity type and has a first surface associated with an active region. The Schottky layer is provided over the active region of the first surface to form a Schottky junction. A plurality of junction barrier elements are formed in the drift layer below the Schottky junction, and a plurality of central implants are also formed in the drift layer below the Schottky junction. In certain embodiments, at least one central implant is provided between each adjacent pair of junction barrier elements.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: April 19, 2016
    Assignee: Cree, Inc.
    Inventor: Qingchun Zhang
  • Patent number: 9318623
    Abstract: An electronic device includes a drift region, a Schottky contact on a surface of the drift region, and an edge termination structure in the drift region adjacent the Schottky contact. The edge termination structure includes a recessed region that is recessed from the surface of the drift region by a distance d that may be about 0.5 microns.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: April 19, 2016
    Assignee: Cree, Inc.
    Inventors: Qingchun Zhang, Jason Henning
  • Patent number: 9312343
    Abstract: A transistor may include a semiconductor drift layer of a first semiconductor material and a semiconductor channel layer on the semiconductor drift layer. The semiconductor channel layer may include a second semiconductor material different than the first semiconductor material. A semiconductor interconnection layer may be electrically coupled between the semiconductor drift layer and the semiconductor channel layer, and the semiconductor interconnection layer may include a third semiconductor material different than the first and second semiconductor materials. In addition, a control electrode may be provided on the semiconductor channel layer.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: April 12, 2016
    Assignee: Cree, Inc.
    Inventors: Qingchun Zhang, Sei-Hyung Ryu, Anant K. Agarwal, Sarit Dhar
  • Patent number: 9306004
    Abstract: A negative bevel edge termination for a Silicon Carbide (SiC) semiconductor device is disclosed. In one embodiment, the negative bevel edge termination includes multiple steps that approximate a smooth negative bevel edge termination at a desired slope. More specifically, in one embodiment, the negative bevel edge termination includes at least five steps, at least ten steps, or at least 15 steps. The desired slope is, in one embodiment, less than or equal to fifteen degrees. In one embodiment, the negative bevel edge termination results in a blocking voltage for the semiconductor device of at least 10 kilovolts (kV) or at least 12 kV. The semiconductor device is preferably, but not necessarily, a thyristor such as a power thyristor, a Bipolar Junction Transistor (BJT), an Insulated Gate Bipolar Transistor (IGBT), a U-channel Metal-Oxide-Semiconductor Field Effect Transistor (UMOSFET), or a PIN diode.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: April 5, 2016
    Assignee: Cree, Inc.
    Inventors: Qingchun Zhang, Craig Capell, Anant Agarwal, Sei-Hyung Ryu
  • Publication number: 20160093748
    Abstract: A Schottky diode is disclosed that includes a silicon carbide substrate, a silicon carbide drift layer, a Schottky contact, and a passivation structure. The silicon carbide drift layer provides an active region and an edge termination region about the active region. The Schottky contact has sides and a top extending between the two sides and includes a Schottky layer over the active region and an anode contact over the Schottky layer. The passivation structure covers the edge termination region, the sides of the Schottky contact, and at least a portion of the top of the Schottky contact. The passivation structure includes a first silicon nitride layer, a silicon dioxide layer over the first silicon nitride layer, and a second silicon nitride layer over the silicon dioxide layer.
    Type: Application
    Filed: September 26, 2014
    Publication date: March 31, 2016
    Inventors: Van Mieczkowski, Jonathan Young, Qingchun Zhang, John Williams Palmour
  • Patent number: 9246020
    Abstract: An electronic device includes a drift region, a Schottky contact on a surface of the drift region, and an edge termination structure in the drift region adjacent the Schottky contact. The edge termination structure includes a recessed region that is recessed from the surface of the drift region by a distance d that may be about 0.5 microns.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: January 26, 2016
    Assignee: Cree, Inc.
    Inventors: Qingchun Zhang, Jason Henning
  • Patent number: 9231122
    Abstract: The present disclosure generally relates to a Schottky diode that has a substrate, a drift layer provided over the substrate, and a Schottky layer provided over an active region of the drift layer. The metal for the Schottky layer and the semiconductor material for the drift layer are selected to provide a low barrier height Schottky junction between the drift layer and the Schottky layer.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: January 5, 2016
    Assignee: Cree, Inc.
    Inventors: Jason Patrick Henning, Qingchun Zhang, Sei-Hyung Ryu, Anant Kumar Agarwal, John Williams Palmour, Scott Allen
  • Publication number: 20150364584
    Abstract: An IGBT device includes a drift region, a collector contact, an injector region, a pair of junction implants, a gate contact, and an emitter contact. The injector region includes a first surface in contact with the collector contact, a second surface opposite the first surface and in contact with the drift region, and at least one bypass region running between the first surface and the second surface. Notably, the at least one bypass region has a charge carrier that is different from that of the injector region. The pair of junction implants is in the drift region along a surface of the drift region opposite the injector region. The gate contact and the emitter contact are on the surface of the drift region opposite the injector region.
    Type: Application
    Filed: June 12, 2014
    Publication date: December 17, 2015
    Inventors: Sei-Hyung Ryu, Qingchun Zhang
  • Publication number: 20150333191
    Abstract: The present disclosure generally relates to a Schottky diode that has a substrate, a drift layer provided over the substrate, and a Schottky layer provided over an active region of the drift layer. The metal for the Schottky layer and the semiconductor material for the drift layer are selected to provide a low barrier height Schottky junction between the drift layer and the Schottky layer.
    Type: Application
    Filed: July 28, 2015
    Publication date: November 19, 2015
    Inventors: Jason Patrick Henning, Qingchun Zhang, Sei-Hyung Ryu, Anant Kumar Agarwal, John Williams Palmour, Scott Allen
  • Publication number: 20150311325
    Abstract: An IGBT device includes an IGBT stack including a first surface and a second surface opposite the first surface, a collector contact over the first surface of the IGBT stack, a gate contact on the second surface of the IGBT stack, and an emitter contact on the second surface of the IGBT stack. The IGBT stack includes an injector region, which provides the first surface of the IGBT stack, a drift region over the injector region opposite the first surface, a pair of junction implants in the IGBT stack along the second surface of the IGBT stack, and a field termination region between the pair of junction implants in the IGBT stack along the second surface of the IGBT stack.
    Type: Application
    Filed: April 23, 2014
    Publication date: October 29, 2015
    Applicant: CREE, INC.
    Inventor: Qingchun Zhang
  • Patent number: 9171977
    Abstract: A thyristor includes a first conductivity type semiconductor layer, a first conductivity type carrier injection layer on the semiconductor layer, a second conductivity type drift layer on the carrier injection layer, a first conductivity type base layer on the drift layer, and a second conductivity type anode region on the base layer. The thickness and doping concentration of the carrier injection layer are selected to reduce minority carrier injection by the carrier injection layer in response to an increase in operating temperature of the thyristor. A cross-over current density at which the thyristor shifts from a negative temperature coefficient of forward voltage to a positive temperature coefficient of forward voltage is thereby reduced.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: October 27, 2015
    Assignee: Cree, Inc.
    Inventor: Qingchun Zhang
  • Publication number: 20150287805
    Abstract: An insulated gate bipolar transistor (IGBT) includes a substrate having a first conductivity type, a drift layer having a second conductivity type opposite the first conductivity type, and a well region in the drift layer and having the first conductivity type. An epitaxial channel adjustment layer is on the drift layer and has the second conductivity type. An emitter region extends from a surface of the epitaxial channel adjustment layer through the epitaxial channel adjustment layer and into the well region. The emitter region has the second conductivity type and at least partially defines a channel region in the well region adjacent to the emitter region. A gate oxide layer is on the channel region, and a gate is on the gate oxide layer. Related methods are also disclosed.
    Type: Application
    Filed: April 24, 2014
    Publication date: October 8, 2015
    Applicant: Cree, Inc.
    Inventors: Qingchun Zhang, Sei-Hyung Ryu, Charlotte Jonas, Anant K. Agarwal
  • Patent number: 9117739
    Abstract: An electronic device includes a silicon carbide layer including an n-type drift region therein, a contact forming a junction, such as a Schottky junction, with the drift region, and a p-type junction barrier region on the silicon carbide layer. The p-type junction barrier region includes a p-type polysilicon region forming a P-N heterojunction with the drift region, and the p-type junction barrier region is electrically connected to the contact. Related methods are also disclosed.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: August 25, 2015
    Assignee: Cree, Inc.
    Inventor: Qingchun Zhang
  • Patent number: 9064710
    Abstract: A transistor structure optimizes current along the A-face of a silicon carbide body to form an AMOSFET that minimizes the JFET effect in the drift region during forward conduction in the on-state. The AMOSFET further shows high voltage blocking ability due to the addition of a highly doped well region that protects the gate corner region in a trench-gated device. The AMOSFET uses the A-face conduction along a trench sidewall in addition to a buried channel layer extending across portions of the semiconductor mesas defining the trench. A doped well extends from at least one of the mesas to a depth within the current spreading layer that is greater than the depth of the trench. A current spreading layer extends between the semiconductor mesas beneath the bottom of the trench to reduce junction resistance in the on-state. A buffer layer between the trench and the deep well further provides protection from field crowding at the trench corner.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: June 23, 2015
    Assignee: Cree, Inc.
    Inventors: Qingchun Zhang, Anant Agarwal, Charlotte Jonas
  • Patent number: 9064840
    Abstract: An insulated gate bipolar transistor (IGBT) includes a first conductivity type substrate and a second conductivity type drift layer on the substrate. The second conductivity type is opposite the first conductivity type. The IGBT further includes a current suppressing layer on the drift layer. The current suppressing layer has the second conductivity type and has a doping concentration that is larger than a doping concentration of the drift layer. A first conductivity type well region is in the current suppressing layer. The well region has a junction depth that is less than a thickness of the current suppressing layer, and the current suppressing layer extends laterally beneath the well region. A second conductivity type emitter region is in the well region.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: June 23, 2015
    Assignee: Cree, Inc.
    Inventor: Qingchun Zhang
  • Patent number: 9059197
    Abstract: Electronic device structures including semiconductor ledge layers for surface passivation and methods of manufacturing the same are disclosed. In one embodiment, the electronic device includes a number of semiconductor layers of a desired semiconductor material having alternating doping types. The semiconductor layers include a base layer of a first doping type that includes a highly doped well forming a first contact region of the electronic device and one or more contact layers of a second doping type on the base layer that have been etched to form a second contact region of the electronic device. The etching of the one or more contact layers causes substantial crystalline damage, and thus interface charge, on the surface of the base layer. In order to passivate the surface of the base layer, a semiconductor ledge layer of the semiconductor material is epitaxially grown on at least the surface of the base layer.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: June 16, 2015
    Assignee: Cree, Inc.
    Inventors: Qingchun Zhang, Anant Kumar Agarwal
  • Patent number: 9029975
    Abstract: An electronic device includes a silicon carbide layer including an n-type drift region therein, a contact forming a junction, such as a Schottky junction, with the drift region, and a p-type junction barrier region on the silicon carbide layer. The p-type junction barrier region includes a p-type polysilicon region forming a P-N heterojunction with the drift region, and the p-type junction barrier region is electrically connected to the contact. Related methods are also disclosed.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: May 12, 2015
    Assignee: Cree, Inc.
    Inventor: Qingchun Zhang
  • Publication number: 20150111347
    Abstract: Electronic device structures including semiconductor ledge layers for surface passivation and methods of manufacturing the same are disclosed. In one embodiment, the electronic device includes a number of semiconductor layers of a desired semiconductor material having alternating doping types. The semiconductor layers include a base layer of a first doping type that includes a highly doped well forming a first contact region of the electronic device and one or more contact layers of a second doping type on the base layer that have been etched to form a second contact region of the electronic device. The etching of the one or more contact layers causes substantial crystalline damage, and thus interface charge, on the surface of the base layer. In order to passivate the surface of the base layer, a semiconductor ledge layer of the semiconductor material is epitaxially grown on at least the surface of the base layer.
    Type: Application
    Filed: June 20, 2014
    Publication date: April 23, 2015
    Inventors: Qingchun Zhang, Anant Kumar Agarwal
  • Publication number: 20150084063
    Abstract: A semiconductor device includes a substrate, a drift layer over the substrate, a spreading layer over the drift layer, and a pair of junction implants in a surface of the spreading layer opposite the drift layer. An anode covers the surface of the spreading layer opposite the drift layer, and a cathode covers a surface of the substrate opposite the drift layer. By including the spreading layer, a better balance can be struck between the on state resistance of the semiconductor device and the peak electric field in the device, thereby improving the performance thereof.
    Type: Application
    Filed: April 17, 2014
    Publication date: March 26, 2015
    Applicant: Cree, Inc.
    Inventors: Edward Robert Van Brunt, Vipindas Pala, Lin Cheng, Qingchun Zhang
  • Publication number: 20150076522
    Abstract: An electronic device includes a silicon carbide layer including an n-type drift region therein, a contact forming a junction, such as a Schottky junction, with the drift region, and a p-type junction barrier region on the silicon carbide layer. The p-type junction barrier region includes a p-type polysilicon region forming a P-N heterojunction with the drift region, and the p-type junction barrier region is electrically connected to the contact. Related methods are also disclosed.
    Type: Application
    Filed: September 29, 2014
    Publication date: March 19, 2015
    Inventor: Qingchun Zhang