Semiconductor devices with heterojunction barrier regions and methods of fabricating same
An electronic device includes a silicon carbide layer including an n-type drift region therein, a contact forming a junction, such as a Schottky junction, with the drift region, and a p-type junction barrier region on the silicon carbide layer. The p-type junction barrier region includes a p-type polysilicon region forming a P-N heterojunction with the drift region, and the p-type junction barrier region is electrically connected to the contact. Related methods are also disclosed.
Latest Cree, Inc. Patents:
- Die-attach method to compensate for thermal expansion
- Group III HEMT and capacitor that share structural features
- Multi-stage decoupling networks integrated with on-package impedance matching networks for RF power amplifiers
- Asymmetric Doherty amplifier circuit with shunt reactances
- Power switching devices with high dV/dt capability and methods of making such devices
The present invention relates to semiconductor devices and the fabrication of semiconductor devices and more particularly, to Junction Barrier Schottky (JBS) diodes, and the fabrication of such diodes.
BACKGROUNDHigh voltage silicon carbide (SiC) Schottky diodes, which may have voltage blocking ratings between, for example, about 600V and about 2.5 kV, are expected to compete with silicon PIN diodes having similar voltage ratings. Such diodes may handle as much as about 100 amps or more of forward current, depending on their active area design. High voltage Schottky diodes have a number of important applications, particularly in the field of power conditioning, distribution and control.
An important characteristic of a SiC Schottky diode in such applications is its switching speed. Silicon-based PIN devices typically exhibit relatively poor switching speeds. A silicon PIN diode may have a maximum switching speed of approximately 20 kHz, depending on its voltage rating. In contrast, silicon carbide-based Schottky devices are theoretically capable of much higher switching speeds, for example, in excess of about 100 times better than silicon. In addition, silicon carbide devices may be capable of handling a higher current density than silicon devices.
A conventional SiC Schottky diode structure has an n-type SiC substrate on which an n− epitaxial layer, which functions as a drift region, is formed. The device typically includes a Schottky contact formed directly on the n− layer. A junction termination region, such as a guard ring and/or p-type JTE (junction termination extension) region, is typically formed to surround the Schottky junction active region. The purpose of junction termination region is to reduce or prevent electric field crowding at the edges of the Schottky junction, and to reduce or prevent the depletion region from interacting with the surface of the device. Surface effects may cause the depletion region to spread unevenly, which may adversely affect the breakdown voltage of the device. Other termination techniques include field plates and floating field rings that may be more strongly influenced by surface effects. A channel stop region may also be formed by implantation of n-type dopants in order to prevent the depletion region from extending to the edge of the device.
Regardless of the type of termination used, the Schottky diode will fail if a large enough reverse voltage is applied to the junction. Such failures are generally catastrophic, and may damage or destroy the device. Furthermore, even before the junction has failed, a Schottky diode may experience large reverse leakage currents. In order to reduce such leakage currents, the junction barrier Schottky (JBS) diode was developed. JBS diodes are sometimes referred to as Merged PIN-Schottky (MPS) diodes. A conventional JBS diode 10 is illustrated in
In forward operation, the junction J1 between the anode contact 18 and the drift layer 14 turns on before the junction J2 between the p+ regions 16 and the drift layer 14. Thus, at low forward voltages, the device exhibits Schottky diode behavior. That is, current transport in the device is dominated by majority carriers (electrons) injected across the Schottky junction J1 at low forward voltages. As there may be no minority carrier injection (and thus no minority charge storage) in the device at normal operating voltages, JBS diodes have fast switching speeds characteristic of Schottky diodes.
Under reverse bias conditions, however, the depletion regions formed by the PN junctions J2 between the p+ regions 16 and the drift layer 14 expand to block reverse current through the device 10, protecting the Schottky junction J1 and limiting reverse leakage current in the device 10. Thus, in reverse bias, the JBS diode 10 behaves like a PIN diode. The voltage blocking ability of the device 10 is typically determined by the thickness and doping of the drift layer 14 and the design of the edge termination.
SUMMARYAn electronic device according to some embodiments includes a silicon carbide layer including an n-type drift region therein, a contact forming a Schottky junction with the drift region, and a p-type junction barrier region on the silicon carbide layer. The p-type junction barrier region includes a p-type polysilicon region forming a P-N heterojunction with the drift region and the p-type junction barrier region is electrically connected to the contact.
The Schottky junction between the contact and the drift region may be configured to turn on at a lower forward voltage than the P-N heterojunction between the junction barrier region and the drift region.
The contact may form an ohmic contact to the p-type polysilicon region, and the P-N heterojunction between the heterojunction barrier region and the drift region may be configured to begin to conduct majority carriers at a higher forward voltage than a turn on voltage of the Schottky junction and at a lower voltage at which the P-N heterojunction between the heterojunction barrier region and the drift region begins to inject minority carriers into the drift region.
The electronic device may further include a guard ring termination region at a surface of the silicon carbide layer laterally adjacent to the contact. The guard ring termination region may include a second p-type polysilicon region on the drift region, the second p-type polysilicon region being electrically isolated from the contact under zero bias conditions.
The electronic device may further include a junction termination region at the surface of the silicon carbide layer having a conductivity type opposite the conductivity type of the drift region, the second p-type polysilicon region extends into the junction termination region.
The junction barrier region may include a plurality of p-type polysilicon regions in the drift region and at least one p-type polysilicon minority injector pad in the drift region beneath the contact and electrically connected to the contact.
The minority injector pad may have a surface area in a horizontal plane parallel to a major surface of the silicon carbide layer that is larger than a surface area in the horizontal plane of one of the plurality of p-type polysilicon regions in the junction barrier region.
The minority carrier injector pad may have a surface area in a horizontal plane parallel to a major surface of the silicon carbide layer that is at least about 10% of a surface area of the drift region in the horizontal plane below the contact.
The electronic device may further include an n+ silicon carbide contact layer on the drift region opposite the contact, and a second contact on the contact layer.
An electronic device according to further embodiments includes a drift region having a first conductivity type, a contact forming a junction with the drift region, and a junction barrier region on the drift region, the junction barrier region having a second conductivity type opposite the first conductivity type and including a heterojunction barrier region on the drift region. The heterojunction barrier region forms a P-N heterojunction with the drift region and is in electrical contact with the contact.
The Schottky junction between the contact and the drift region may be configured to turn on at a lower forward voltage than the P-N heterojunction between the heterojunction barrier region and the drift region.
The contact may form an ohmic contact to the heterojunction barrier region, and the P-N heterojunction between the heterojunction barrier region and the drift region may be configured to begin to conduct majority carriers at a higher forward voltage than a turn on voltage of the Schottky junction and at a lower voltage at which the P-N heterojunction between the heterojunction barrier region and the drift region begins to inject minority carriers into the drift region.
The electronic device may further include a guard ring termination region on the drift region and laterally adjacent to the Schottky junction. The guard ring termination region may include a second heterojunction barrier region.
The heterojunction barrier region may include a plurality of p-type polysilicon regions on the drift region and at least one p-type polysilicon minority injector pad on the drift region beneath the contact and electrically connected to the contact.
The minority carrier injection pad may have a width that is greater than a width of the junction barrier region.
The minority injector pad may have a horizontal surface area that is larger than a horizontal surface area of one of the plurality of p-type polysilicon regions in the junction barrier region.
The drift region may include n-type silicon carbide and the heterojunction barrier region may include p-type polysilicon. In some embodiments, the drift region may include n-type silicon carbide and the heterojunction barrier region may include p-type gallium nitride.
Some embodiments include a termination region at a surface of the drift region and defining an active region of the device within the termination region, wherein a ratio of a surface area of the active region occupied by the heterojunction barrier regions to a total surface area of the active region is about 2% to about 40%. In some embodiments, the ratio is about 4% to about 30%. In some other embodiments, the ratio is about 10% to about 30%, and in further embodiments the ratio is about 20% to about 30%.
Methods of forming an electronic device according to some embodiments include providing a drift region having a first conductivity type, providing a heterojunction barrier region on the drift region, the heterojunction barrier region including a material different from the drift region and having a conductivity type opposite the conductivity type of the drift region and providing a P-N heterojunction with the drift region, and forming a contact on the drift region and on the heterojunction barrier region, the contact forming a Schottky junction with the drift region and forming an ohmic junction with the heterojunction barrier region.
The drift region may include n-type silicon carbide and the heterojunction barrier region may include p-type polysilicon.
The methods may further include providing a guard ring termination region on the drift region laterally adjacent to the Schottky junction, the guard ring termination region may include a second heterojunction barrier region on the drift region.
Providing the heterojunction barrier region may include etching a recess in the drift region, depositing a polysilicon layer in the recess, doping the polysilicon layer to have a conductivity type opposite the conductivity type of the drift region, and patterning the polysilicon layer.
An electronic device according to further embodiments includes a silicon carbide layer including a drift region having a first conductivity type, a contact on a surface of the drift region and forming a Schottky junction with the drift region, and a guard ring in contact with the surface of the silicon carbide layer adjacent to the Schottky junction. The guard ring has a conductivity type opposite the conductivity type of the drift region and includes a material that forms a heterojunction with the silicon carbide layer. The guard ring may include polysilicon and/or gallium nitride.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate certain embodiment(s) of the invention. In the drawings:
Embodiments of the present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present invention. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” “comprising,” “includes” and/or “including” when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
It will be understood that when an element such as a layer, region or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “lateral” or “vertical” may be used herein to describe a relationship of one element, layer or region to another element, layer or region as illustrated in the figures. It will be understood that these terms are intended to encompass different orientations of the device in addition to the orientation depicted in the figures.
Embodiments of the invention are described herein with reference to cross-section illustrations that are schematic illustrations of idealized embodiments (and intermediate structures) of the invention. The thickness of layers and regions in the drawings may be exaggerated for clarity. Additionally, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, an implanted region illustrated as a rectangle will, typically, have rounded or curved features and/or a gradient of implant concentration at its edges rather than a discrete change from implanted to non-implanted region. Likewise, a buried region formed by implantation may result in some implantation in the region between the buried region and the surface through which the implantation takes place. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of the invention.
Some embodiments of the invention are described with reference to semiconductor layers and/or regions which are characterized as having a conductivity type such as n-type or p-type, which refers to the majority carrier concentration in the layer and/or region. Thus, n-type material has a majority equilibrium concentration of negatively charged electrons, while p-type material has a majority equilibrium concentration of positively charged holes. Some material may be designated with a “+” or “−” (as in n+, n−, p+, p−, n++, n−−, p++, p−−, or the like), to indicate a relatively larger (“+”) or smaller (“−”) concentration of majority carriers compared to another layer or region. However, such notation does not imply the existence of a particular concentration of majority or minority carriers in a layer or region.
According to some embodiments, a junction barrier Schottky diode includes features, such as junction barrier regions and/or edge termination features, on or in a drift layer, wherein the junction barrier regions and/or edge termination features are provided by regions of a different material type than the drift layer, and form respective heterojunctions with the drift layer. In some embodiments, the features, such as junction barrier regions and/or edge termination features, may include doped polysilicon, which can be formed, for example, using conventional processes that may not require ion implantation.
Referring to
The layer 113 may be formed, for example, from n-type silicon carbide of the 2H, 4H, 6H, 3C and/or 15R polytype. The drift region 114 may have a dopant concentration of about 2×1014 to about 1×1017 cm−3, depending on design requirements for voltage blocking and on-resistance for the diode 100. Other types of semiconductor materials, such as GaN, GaAs, silicon or germanium may be used. In particular embodiments, the drift region 114 includes 4H-SiC doped with n-type dopants at a concentration of about 5×1015 cm−3.
The heterojunction barrier regions 130 are formed from a semiconducting material that is different from the material of the drift region 114. The heterojunction barrier regions 130 have a conductivity type that is opposite the conductivity type of the drift region 114. Accordingly, the heterojunction barrier regions 130 form P-N heterojunctions with the drift region 114. Furthermore, the Schottky contact 118 may form an ohmic junction with the heterojunction barrier regions 130.
In some embodiments, the barrier height of the P-N heterojunction J3 between the heterojunction barrier regions 130 and the drift layer may be higher than a barrier height of a Schottky junction J4 between a Schottky contact 118 and the drift region 114, so that the P-N heterojunction will turn on at a higher forward voltage than the Schottky junction J4 between the drift region 114 and the Schottky contact 118, as will be discussed in more detail below.
In the embodiments of
In some embodiments, the heterojunction barrier regions 130 may be provided as regions of doped polysilicon. For example, the heterojunction barrier regions 130 may include polysilicon regions doped to have a conductivity that is opposite the conductivity type of the drift region 114, so that the heterojunction barrier regions 130 form P-N heterojunctions J3 with the drift region 114.
The heterojunction barrier regions 130 may be doped with p-type dopants, such as boron and/or aluminum, at a concentration of about 1×1017 to about 1×1020 cm−3, and may extend to a depth of about 0.3 to about 0.5 μm into the drift region 114 from the surface of the drift region 114. In particular embodiments, the heterojunction barrier regions 130 may be doped at a dopant concentration of about 5×1018 cm−3, and may extend to a depth of about 0.3 μm into the drift region 114 from the surface of the drift region 114.
One or more current surge pads 116 may also be provided in the drift region 114. The current surge pads 116 may be formed of the same material as the heterojunction barrier regions 130. For example, the current surge pads 116 may be provided as polysilicon regions doped with p-type dopants, such as boron and/or aluminum, at a concentration of about 1×1018 to about 1×1020 cm−3, and may extend to a depth of about 0.3 to about 0.5 μm into the drift region 114. In particular embodiments, the current surge pads 116 may be doped at a dopant concentration of about 5×1018 cm−3, and may extend to a depth of about 0.3 μm into the drift region 114. The current surge pads 116 have a larger width than the heterojunction barrier regions 130 to encourage the flow of surge current through the current surge pads at high forward voltages, as will be discussed in more detail below. For example, the current surge pads 116 may have a width of about 10 μm to about 250 μm. In particular embodiments, the current surge pads 116 may have a width of about 20 μm.
In some embodiments, the current surge pads 116 and/or heterojunction barrier regions 130 may be formed of other types of materials that can be doped to have a conductivity that is opposite the conductivity of the drift region 114 and can form a heterojunction with the drift region 114. For example, when the drift region comprises n-type silicon carbide, a material such as p-type gallium nitride can be used to form the current surge pads 116 and/or heterojunction barrier regions 130.
The heterojunction barrier regions 130 shown in the embodiments of
As used herein, the term “active region” refers to the two dimensional area of the device in which the Schottky metal contacts the drift layer, and includes the exposed portions 114A of the drift region 114, the heterojunction barrier 130 and the current surge pads 116. Accordingly, the active region includes the Schottky junction area but does not include, for example, the edge termination region described below.
The diode 100 may include an edge termination region 115 surrounding the active region 110 of the diode 100. The edge termination region 115 may include a junction termination extension (JTE) region, field rings, field plates, guard rings, and/or a combination of the foregoing or other terminations. In particular, the device 100 may include a plurality of guard rings 125, which may be formed of the same material as the heterojunction barrier regions 130 and the current surge pad 116 and may also be doped to have a conductivity opposite the conductivity type of the drift region 114. A passivation layer, such as a field oxide layer 127, may be formed on the drift layer and may cover the guard rings 125. The guard rings 125 may be floating guard rings that are electrically isolated from the anode contact 118 under zero bias conditions.
In some embodiments, the edge termination region 115 includes a robust guard ring (RGR) termination as described in U.S. Pat. No. 7,026,650, which is assigned to the assignee of the present invention, the disclosure of which is incorporated herein by reference as if set forth fully. In particular, the RGR termination may include an implanted region 160 of dopants having a conductivity opposite the conductivity of the drift layer. The implanted region 160 may extend to a depth in the drift region 114 that is greater or less than the depth of the guard rings 125. The implanted region 160 may have a net concentration of dopants having a conductivity opposite the conductivity type of the drift region 114 of about 1×1017 cm−3.
Additional conventional terminations of SiC Schottky diodes are described in “Planar Terminations in 4H-SiC Schottky Diodes With Low Leakage And High Yields” by Singh et al., ISPSD '97, pp. 157 160. A p-type epitaxy guard ring termination for a SiC Schottky Barrier Diode is described in “The Guard-Ring Termination for High-Voltage SiC Schottky Barrier Diodes” by Ueno et al., IEEE Electron Device Letters, Vol. 16, No. 7, July, 1995, pp. 331 332. Additionally, other termination techniques are described in published PCT Application No. WO 97/08754 entitled “SiC Semiconductor Device Comprising A PN Junction With A Voltage Absorbing Edge.”
The current surge pads 116 and the heterojunction barrier regions 130 may be formed within recesses in the drift region 114, and may protrude above an upper surface of the drift region 114. As the current surge pads 116 and the heterojunction barrier regions 130 have an opposite conductivity type from the drift region 114, the heterojunction barrier regions 130 form P-N junctions J3 with the drift region 114, while the current surge pads 116 form P-N junctions J5 with the drift region 114.
In the diode 100′ illustrated in
In the diode 100″ illustrated in
Referring again to
The Schottky contact 118 on the surface of the drift region 114 forms a Schottky junction J4 with the exposed portions 114A of the drift region 114 between adjacent heterojunction barrier regions 130. The anode contact 118 may include a metal, such as aluminum, titanium and/or nickel. In some embodiments, the anode contact 118 may form an ohmic contact with the current surge pad 116. A metal overlayer 119 may be formed on the Schottky contact 118. The metal overlayer 119 may comprise TiW/Al, for example, and may be provided as a contact layer on the Schottky contact 118.
A cathode contact 120 is formed on a side of the substrate 112 opposite the drift region 114 and/or directly on the drift region 114. The cathode contact 120 may include a metal, such as nickel, that is capable of forming an ohmic contact to n-type silicon carbide.
Under reverse bias conditions, the depletion regions formed by the p-n junctions J3 between the heterojunction barrier regions 130 and the drift region 114, as well as the depletion region of the p-n junction J5, may expand to block reverse current through the device 100, protecting the Schottky junction J4 and limiting reverse leakage current in the device 100. Thus, in reverse bias, the diode 100 may function substantially like a PIN diode.
In forward operation, the Schottky junction J4 between the anode contact 118 and the exposed portions 114A of the drift region 114 turns on before the heterojunction J3 and the junction J5 between the current surge pad 116 and the drift region 114. Thus, at low forward voltages, the device exhibits Schottky diode behavior, and the operation of the diode 100 will be dominated by the injection of majority carriers across the Schottky junctions J3 and J4. Due to the absence of minority carrier injection under normal operating conditions, the diode 100 may have a very fast switching capability, which is characteristic of Schottky diodes in general.
The current surge pad 116 may be designed to begin to conduct at a forward voltage that is higher than the turn-on voltage of the Schottky junction J3. Thus, in the event of a current surge that causes the forward voltage of the diode 100 to increase, the p-n junction J5 will begin to conduct. Once the p-n junction J5 begins to conduct, the operation of the diode 100 is dominated by the injection and recombination of minority carriers across the p-n junction J5. In that case, the forward voltage drop of the diode 100 may be clamped, which may decrease the amount of power dissipated by the diode 100 for a given level of current. Thus, turn-on of the p-n junction J5 when the forward voltage of the diode 100 increases may reduce and/or prevent forward current runaway in the diode 100.
Furthermore, in a device according to some embodiments, the turn-on of the p-n junctions J3 and J5 may occur in stages. In a first stage, the Schottky junction J4 between the drift region 114 and the Schottky contact 118 may turn on, resulting in majority carrier conduction. In a second stage, as the bias on the P-N heterojunction J3 increases, majority carriers may be injected across the P-N heterojunction J3, allowing for further reduction in on-resistance. Furthermore, in a device according to some embodiments, the turn on of junction J5 may occur in stages, resulting in minority carrier injection allowing for surge current capability.
Forward current operation of a device according to some embodiments is illustrated in
Referring to
In particular embodiments, the turn-on voltage of the Schottky junction J4 may be about 0.8 V when the Schottky contact 118 is titanium and the drift region 114 is n-type silicon carbide, while the turn-on voltage of the junction J3 between the heterojunction barrier region 130 and the drift region 114 may be about 1.5 V.
As shown in
When the forward voltage of the device reaches V2, the heterojunction J3 between the heterojunction barrier region 130 and the drift region 114 and the heterojunction J5 between the current surge pad 116 and the drift region 114 may turn on, resulting in unipolar injection of electrons 41 into the drift region. The device may still exhibit some spreading resistance. However, the overall resistance of the device may decrease, resulting in a increased slope in Region 2 of the current-voltage curve shown in
As the voltage on the device increases, the Schottky current through junction J4 increases. The voltage drop ΔV across the current surge pad 116 also increases to the point where the P-N heterojunction J5 between the current surge pad 116 and the drift region 114 begins to inject minority carriers 42 (e.g., holes in the case of an n-type drift layer) into the drift region 114. This condition is illustrated as Region 3 of
It will be appreciated that the voltage drop ΔV across the half-width of the current surge pad 116, which is greater than the half-width of the heterojunction barrier regions 130, where “half-width” refers to the minimum lateral distance from an edge of the feature to a center of the feature, i.e., the minimum distance that laterally spreading current must travel to reach the center point of the feature. As the width of the current surge pad 116 is greater than the widths of the heterojunction barrier regions 130, the junction J5 between the current surge pad 116 and the drift layer will tend to turn on before the junctions between the heterojunction barrier regions 130 and the drift region 114.
Empirical forward current-voltage curves at operating temperatures ranging from 25° C. to 200° C. for a device according to some embodiments with p+ polysilicon as the Schottky contact are illustrated in
The drift region 114 may be formed, for example, from n-type silicon carbide of the 2H, 4H, 6H, 3C and/or 15R polytype having a dopant concentration of about 2×1014 to about 1×1017 cm−3, depending on design requirements for voltage blocking and on-resistance for the diode 100. Other types of semiconductor materials, such as GaN, GaAs, silicon or germanium may be used. In particular embodiments, the drift region 114 includes 4H-SiC doped with n-type dopants at a concentration of about 5×1015 cm−3.
Optional implanted regions 160 may be formed at the device periphery to provide a robust guard ring termination.
A plurality of recesses 170, 171 and 172 are formed in a surface of a drift region 114, for example by masking and etching techniques which are well known in the art. The recesses 170, 171 and 172 may extend to a depth of about 0.3 to about 0.5 μm into the drift region 114 from the surface of the drift region 114. A layer of a material 180, such as polysilicon, which forms a heterojunction with the drift layer, is deposited on the surface of the drift layer and into the recesses 170, 171, 172. The layer 180 of polysilicon may be doped with p-type dopants, such as boron and/or aluminum, at a concentration of about 1×1018 to about 1×1019 cm−3, and in particular embodiments at a dopant concentration of about 5×1018 cm−3. The layer 180 of polysilicon may be doped using any conventional doping technique, such as in-situ doping, spinning-on, diffusion and drive-in annealing, etc.
The layer 180 may be patterned using photolithographic techniques to form respective current surge pads 116, heterojunction barrier regions 130 and/or guard rings 125 that protrude above the surface of the drift region 114 (
Referring to
A cathode contact 120 is formed on a side of the substrate 112 opposite the drift region 114. The cathode contact 120 may include a metal, such as nickel, that is capable of forming an ohmic contact to n-type silicon carbide.
An implanted region 160 of dopants having a conductivity opposite the conductivity of the drift layer may be formed beneath the guard rings 125 to probed a robust guard ring (RGR) termination. The implanted region 160 may extend to a depth in the drift layer that is greater or less than the depth of the guard rings, and may have a net concentration of dopants having a conductivity opposite the conductivity type of the drift region 114 of about 1×1017 cm−3. Finally, a field oxide layer 127 may be formed on the drift layer and may cover the guard rings 125.
Further embodiments are illustrated in
Embodiments of the present invention provide junction barrier Schottky semiconductor devices that may require no, or fewer, implantation steps compared to conventional JBS devices. Thus, cost and/or complexity of fabrication of such devices can be reduced. Furthermore, some embodiments use doped polysilicon features in a JBS diode. Polysilicon can be doped in many conventional techniques, and polysilicon processing techniques are compatible with high throughput processing. Furthermore, p-type polysilicon can act as a minority injector in surge current conditions in some embodiments, and the surge capability may be further enhanced at high temperature operation.
While embodiments of the present invention have been described with reference to particular sequences of operations, as will be appreciated by those of skill in the art, certain operations within the sequence may be reordered while still benefiting from the teachings of the present invention. Accordingly, the present invention should not be construed as limited to the exact sequence of operations described herein.
In the drawings and specification, there have been disclosed typical embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.
Claims
1. An electronic device, comprising:
- a silicon carbide layer including an n-type drift region therein;
- a contact forming a Schottky junction with the drift region;
- a p-type junction barrier region on the silicon carbide layer, the p-type junction barrier region including a p-type polysilicon region forming a P-N heterojunction with the drift region and the p-type junction barrier region being electrically connected to the contact; and
- a p-type minority injector pad in the drift region beneath the contact and electrically connected to the contact, wherein the p-type minority injector pad region is configured to begin to conduct minority carriers at a higher forward voltage than when the P-N heterojunction begins to conduct majority carriers, the p-type polysilicon region and the p-type minority injector pad in the drift region and protruding above an upper surface of the drift region into the contact, wherein the p-type minority injector pad protrudes above an upper surface of the drift region into the contact further than the p-type polysilicon region.
2. The electronic device of claim 1, wherein the Schottky junction between the contact and the drift region is configured to conduct current at a lower forward voltage than the P-N heterojunction between the junction barrier region and the drift region.
3. The electronic device of claim 2, wherein the contact forms an ohmic contact to the p-type polysilicon region, and wherein the P-N heterojunction between the junction barrier region and the drift region is configured to begin to conduct majority carriers at a higher forward voltage than a turn on voltage of the Schottky junction and at a lower voltage at which the P-N heterojunction between the junction barrier region and the drift region begins to inject minority carriers into the drift region.
4. The electronic device of claim 1, further comprising: a guard ring termination region at a surface of the silicon carbide layer laterally adjacent to the contact, wherein the guard ring termination region includes a second p-type polysilicon region on the drift region, the second p-type polysilicon region being electrically isolated from the contact under zero bias conditions.
5. The electronic device of claim 4, further comprising a junction termination region at the surface of the silicon carbide layer having a conductivity type opposite the conductivity type of the drift region, wherein the second p-type polysilicon region extends into the junction termination region.
6. The electronic device of claim 1, wherein the junction barrier region comprises a plurality of p-type polysilicon regions in the drift region.
7. The electronic device of claim 6, wherein the minority injector pad has a surface area in a horizontal plane parallel to a major surface of the silicon carbide layer that is larger than a surface area in the horizontal plane of one of the plurality of p-type polysilicon regions in the junction barrier region.
8. The electronic device of claim 6, wherein the minority carrier injector pad has a surface area in a horizontal plane parallel to a major surface of the silicon carbide layer that is at least about 10% of a surface area of the drift region in the horizontal plane below the contact.
9. The electronic device of claim 1, wherein the contact comprises a first contact, the device further comprising an n+ silicon carbide contact layer on the drift region opposite the contact, and a second contact on the contact layer.
10. An electronic device, comprising:
- a drift region having a first conductivity type;
- a contact on the drift region and forming a junction with the drift region;
- a junction barrier region on the drift region, the junction barrier region having a second conductivity type opposite the first conductivity type and including a heterojunction barrier region on the drift region, wherein the heterojunction barrier region forms a P-N heterojunction with the drift region and is in electrical contact with the contact; and
- a p-type minority injector pad in the drift region beneath the contact and electrically connected to the contact, the p-type minority injector pad region being configured to begin to conduct minority carriers at a higher forward voltage than when the P-N heterojunction begins to conduct majority carriers, wherein the junction between the contact and the drift region comprises a Schottky junction that is configured to conduct current at a lower forward voltage than the P-N heterojunction between the heterojunction barrier region and the drift region.
11. The electronic device of claim 10, further comprising:
- a guard ring termination region on the drift region and laterally adjacent to the junction, wherein the guard ring termination region includes a second heterojunction barrier region.
12. The electronic device of claim 10, wherein the heterojunction barrier region comprises a plurality of p-type polysilicon regions on the drift region.
13. The electronic device of claim 12, wherein the minority carrier injection pad has a width that is greater than a width of the junction barrier region.
14. The electronic device of claim 12, wherein the minority injector pad has a horizontal surface area that is larger than a horizontal surface area of one of the plurality of p-type polysilicon regions in the junction barrier region.
15. The electronic device of claim 10, wherein the drift region comprises n-type silicon carbide and the heterojunction barrier region comprises p-type polysilicon.
16. The electronic device of claim 10, wherein the drift region comprises n-type silicon carbide and the heterojunction barrier region comprises p-type gallium nitride.
17. The electronic device of claim 10, further comprising:
- a termination region at a surface of the drift region and defining an active region of the device within the termination region;
- wherein a ratio of a surface area of the active region occupied by the heterojunction barrier regions to a total surface area of the active region is about 2% to about 40%.
18. The electronic device of claim 17, wherein the ratio of the surface area of the active region occupied by the heterojunction barrier regions to the total surface area of the active region is about 10% to about 30%.
19. The electronic device of claim 17, wherein the ratio of the surface area of the active region occupied by the heterojunction barrier regions to the total surface area of the active region is about 20% to about 30%.
20. An electronic device, comprising:
- a silicon carbide layer including a drift region having a first conductivity type;
- a contact on a surface of the drift region and forming a junction with the drift region;
- a junction barrier region on the drift region, the junction barrier region having a second conductivity type opposite the first conductivity type and including a heterojunction barrier region on the drift region, wherein the heterojunction barrier region forms a P-N heterojunction with the drift region and is in electrical contact with the contact;
- a p-type minority injector pad on the drift region beneath the contact and electrically connected to the contact, the p-type minority injector pad region being configured to begin to conduct minority carriers at a higher forward voltage than when the P-N heterojunction begins to conduct majority carriers; and
- a beveled edge termination terminating the surface of the drift region proximate an edge of the contact.
21. The electronic device of claim 1, wherein the p-type minority injector pad comprises polysilicon.
22. The electronic device of claim 1, wherein the P-N heterojunction between the junction barrier region and the drift region is configured to begin to conduct majority carriers at a higher forward voltage than a turn on voltage of the Schottky junction.
23. The electronic device of claim 1, wherein the p-type polysilicon region has an upper portion that extends laterally onto the upper surface of the drift region at a greater width than a portion of the p-type polysilicon region in the drift region, and wherein the p-type minority injector pad has an upper portion that extends laterally onto the upper surface of the drift region at a greater width than a portion of the p-type minority injector pad in the drift region.
24. The electronic device of claim 10, wherein the P-N heterojunction between the junction barrier region and the drift region is configured to begin to conduct majority carriers at a higher forward voltage than a turn on voltage of the junction between the contact and the drift region.
3439189 | April 1969 | Petry |
3629011 | December 1971 | Tohi et al. |
3924024 | December 1975 | Naber et al. |
4160920 | July 10, 1979 | Courier de Mere |
4242690 | December 30, 1980 | Temple |
4466172 | August 21, 1984 | Batra |
4581542 | April 8, 1986 | Steigerwald |
4641174 | February 3, 1987 | Baliga |
4644637 | February 24, 1987 | Temple |
4811065 | March 7, 1989 | Cogan |
4875083 | October 17, 1989 | Palmour |
4927772 | May 22, 1990 | Arthur et al. |
4945394 | July 31, 1990 | Palmour et al. |
4946547 | August 7, 1990 | Palmour et al. |
5011549 | April 30, 1991 | Kong et al. |
5017976 | May 21, 1991 | Sugita |
5028977 | July 2, 1991 | Kenneth et al. |
5032888 | July 16, 1991 | Seki |
5041881 | August 20, 1991 | Bishop et al. |
5111253 | May 5, 1992 | Korman et al. |
5155289 | October 13, 1992 | Bowles |
5166760 | November 24, 1992 | Mori et al. |
5170231 | December 8, 1992 | Fujii et al. |
5170455 | December 8, 1992 | Goossen et al. |
5184199 | February 2, 1993 | Fujii et al. |
5192987 | March 9, 1993 | Khan et al. |
5200022 | April 6, 1993 | Kong et al. |
5210051 | May 11, 1993 | Carter, Jr. |
5262669 | November 16, 1993 | Wakatabe et al. |
5270554 | December 14, 1993 | Palmour |
5292501 | March 8, 1994 | Degenhardt et al. |
5296395 | March 22, 1994 | Khan et al. |
5345100 | September 6, 1994 | Kan et al. |
5348895 | September 20, 1994 | Smayling et al. |
5371383 | December 6, 1994 | Miyata et al. |
5384270 | January 24, 1995 | Ueno |
5385855 | January 31, 1995 | Brown et al. |
RE34861 | February 14, 1995 | Davis et al. |
5393993 | February 28, 1995 | Edmond et al. |
5393999 | February 28, 1995 | Malhi |
5396085 | March 7, 1995 | Baliga |
5399887 | March 21, 1995 | Weitzel et al. |
5459107 | October 17, 1995 | Palmour |
5468654 | November 21, 1995 | Harada |
5473176 | December 5, 1995 | Kakumoto |
5479316 | December 26, 1995 | Smrtic et al. |
5488236 | January 30, 1996 | Baliga et al. |
5506421 | April 9, 1996 | Palmour |
5510281 | April 23, 1996 | Ghezzo et al. |
5510630 | April 23, 1996 | Agarwal |
5523589 | June 4, 1996 | Edmond et al. |
5539217 | July 23, 1996 | Edmond et al. |
5545905 | August 13, 1996 | Muraoka et al. |
5587870 | December 24, 1996 | Anderson et al. |
5629531 | May 13, 1997 | Palmour |
5710059 | January 20, 1998 | Rottner |
5726463 | March 10, 1998 | Brown et al. |
5726469 | March 10, 1998 | Chen |
5734180 | March 31, 1998 | Malhi |
5739564 | April 14, 1998 | Kosa et al. |
5753960 | May 19, 1998 | Dickmann |
5763905 | June 9, 1998 | Harris |
5776837 | July 7, 1998 | Palmour |
5804483 | September 8, 1998 | Harris |
5814859 | September 29, 1998 | Ghezzo et al. |
5831288 | November 3, 1998 | Singh et al. |
5837572 | November 17, 1998 | Gardner et al. |
5851908 | December 22, 1998 | Harris et al. |
5877041 | March 2, 1999 | Fuller |
5877045 | March 2, 1999 | Kapoor |
5885870 | March 23, 1999 | Maiti et al. |
5914500 | June 22, 1999 | Bakowski et al. |
5917203 | June 29, 1999 | Bhatnagar et al. |
5939763 | August 17, 1999 | Hao et al. |
5960289 | September 28, 1999 | Tsui et al. |
5969378 | October 19, 1999 | Singh |
5972801 | October 26, 1999 | Lipkin et al. |
5976936 | November 2, 1999 | Miyajima et al. |
5977605 | November 2, 1999 | Bakowsky et al. |
6020600 | February 1, 2000 | Miyajima et al. |
6025233 | February 15, 2000 | Teresawa |
6025608 | February 15, 2000 | Harris et al. |
6028012 | February 22, 2000 | Wang |
6040237 | March 21, 2000 | Bakowski et al. |
6048766 | April 11, 2000 | Gardner et al. |
6054352 | April 25, 2000 | Ueno |
6054728 | April 25, 2000 | Harada et al. |
6063698 | May 16, 2000 | Tseng et al. |
6083814 | July 4, 2000 | Nilsson |
6096607 | August 1, 2000 | Ueno |
6097046 | August 1, 2000 | Plumton |
6100169 | August 8, 2000 | Suvorov et al. |
6104043 | August 15, 2000 | Hermansson et al. |
6107142 | August 22, 2000 | Suvorov et al. |
6117735 | September 12, 2000 | Ueno |
6121633 | September 19, 2000 | Singh et al. |
6133587 | October 17, 2000 | Takeuchi et al. |
6136727 | October 24, 2000 | Ueno |
6136728 | October 24, 2000 | Wang |
6165822 | December 26, 2000 | Okuno et al. |
6180958 | January 30, 2001 | Cooper, Jr. |
6190973 | February 20, 2001 | Berg et al. |
6204135 | March 20, 2001 | Peters et al. |
6204203 | March 20, 2001 | Narwankar et al. |
6211035 | April 3, 2001 | Moise et al. |
6218254 | April 17, 2001 | Singh et al. |
6218680 | April 17, 2001 | Carter, Jr. et al. |
6221688 | April 24, 2001 | Fujihira et al. |
6221700 | April 24, 2001 | Okuno et al. |
6228720 | May 8, 2001 | Kitabatake et al. |
6238967 | May 29, 2001 | Shiho et al. |
6239463 | May 29, 2001 | Williams et al. |
6239466 | May 29, 2001 | Elasser et al. |
6246076 | June 12, 2001 | Lipkin et al. |
6297100 | October 2, 2001 | Kumar et al. |
6297172 | October 2, 2001 | Kashiwagi |
6303508 | October 16, 2001 | Alok |
6316791 | November 13, 2001 | Schorner et al. |
6316793 | November 13, 2001 | Sheppard et al. |
6329675 | December 11, 2001 | Singh et al. |
6344663 | February 5, 2002 | Slater, Jr. et al. |
6365932 | April 2, 2002 | Kouno et al. |
6388271 | May 14, 2002 | Mitlehner et al. |
6399996 | June 4, 2002 | Chang et al. |
6420225 | July 16, 2002 | Chang et al. |
6429041 | August 6, 2002 | Ryu et al. |
6448160 | September 10, 2002 | Chang et al. |
6455892 | September 24, 2002 | Okuno et al. |
6475889 | November 5, 2002 | Ring |
6501145 | December 31, 2002 | Kaminski et al. |
6515303 | February 4, 2003 | Ring |
6524900 | February 25, 2003 | Dahlqvist et al. |
6548333 | April 15, 2003 | Smith |
6551865 | April 22, 2003 | Kumar et al. |
6573534 | June 3, 2003 | Kumar et al. |
6593620 | July 15, 2003 | Hshieh et al. |
6610366 | August 26, 2003 | Lipkin |
6627539 | September 30, 2003 | Zhao et al. |
6649497 | November 18, 2003 | Ring |
6649995 | November 18, 2003 | Tooi et al. |
6653659 | November 25, 2003 | Ryu et al. |
6696705 | February 24, 2004 | Barthelmess et al. |
6703642 | March 9, 2004 | Shah |
6743703 | June 1, 2004 | Rodov et al. |
6767843 | July 27, 2004 | Lipkin et al. |
6861723 | March 1, 2005 | Willmeroth |
6936850 | August 30, 2005 | Friedrichs et al. |
6946739 | September 20, 2005 | Ring |
6949401 | September 27, 2005 | Kaminski et al. |
6956238 | October 18, 2005 | Ryu et al. |
6979863 | December 27, 2005 | Ryu |
7026650 | April 11, 2006 | Ryu et al. |
7074643 | July 11, 2006 | Ryu |
7118970 | October 10, 2006 | Das et al. |
7125786 | October 24, 2006 | Ring et al. |
7183575 | February 27, 2007 | Shimoida et al. |
7186609 | March 6, 2007 | Korec et al. |
7221010 | May 22, 2007 | Ryu |
7247550 | July 24, 2007 | Zhang |
7253031 | August 7, 2007 | Takahashi |
7279115 | October 9, 2007 | Sumakeris |
7304363 | December 4, 2007 | Shah |
7365363 | April 29, 2008 | Kojima et al. |
7381992 | June 3, 2008 | Ryu |
7528040 | May 5, 2009 | Das et al. |
7544963 | June 9, 2009 | Saxler |
7547578 | June 16, 2009 | Agarwal et al. |
7548112 | June 16, 2009 | Sheppard |
7605441 | October 20, 2009 | Nakazawa et al. |
7649213 | January 19, 2010 | Hatakeyama et al. |
7687825 | March 30, 2010 | Zhang |
7728402 | June 1, 2010 | Zhang et al. |
7781786 | August 24, 2010 | Hayashi et al. |
7851881 | December 14, 2010 | Zhao et al. |
7893467 | February 22, 2011 | Yamamoto et al. |
7902054 | March 8, 2011 | Tsuchida et al. |
7994033 | August 9, 2011 | Yoshii |
8168582 | May 1, 2012 | Blanco et al. |
8232558 | July 31, 2012 | Zhang et al. |
8653534 | February 18, 2014 | Zhang et al. |
8664665 | March 4, 2014 | Henning et al. |
20010055852 | December 27, 2001 | Moise et al. |
20020030191 | March 14, 2002 | Das et al. |
20020038891 | April 4, 2002 | Ryu et al. |
20020047125 | April 25, 2002 | Fukuda et al. |
20020072247 | June 13, 2002 | Lipkin et al. |
20020102358 | August 1, 2002 | Das et al. |
20020121641 | September 5, 2002 | Alok et al. |
20020125482 | September 12, 2002 | Friedrichs et al. |
20020125541 | September 12, 2002 | Korec et al. |
20030025175 | February 6, 2003 | Asano et al. |
20030057482 | March 27, 2003 | Harada |
20030107041 | June 12, 2003 | Tanimoto et al. |
20030137010 | July 24, 2003 | Friedrichs et al. |
20030178672 | September 25, 2003 | Hatakeyama et al. |
20030201455 | October 30, 2003 | Takahashi et al. |
20040016929 | January 29, 2004 | Nakatsuka et al. |
20040031971 | February 19, 2004 | Shimoida et al. |
20040079989 | April 29, 2004 | Kaneko et al. |
20040082116 | April 29, 2004 | Kub et al. |
20040173801 | September 9, 2004 | Willmeroth |
20040183079 | September 23, 2004 | Kaneko et al. |
20040211980 | October 28, 2004 | Ryu |
20040212011 | October 28, 2004 | Ryu |
20040256659 | December 23, 2004 | Kim et al. |
20040259339 | December 23, 2004 | Tanabe et al. |
20050001268 | January 6, 2005 | Baliga |
20050012143 | January 20, 2005 | Tanaka et al. |
20050062124 | March 24, 2005 | Chiola |
20050104072 | May 19, 2005 | Slater, Jr. et al. |
20050139936 | June 30, 2005 | Li |
20050151138 | July 14, 2005 | Slater, Jr. et al. |
20050181536 | August 18, 2005 | Tsuji |
20050224838 | October 13, 2005 | Tanaka et al. |
20050245034 | November 3, 2005 | Fukuda et al. |
20050275055 | December 15, 2005 | Parthasarathy et al. |
20060011128 | January 19, 2006 | Ellison et al. |
20060060884 | March 23, 2006 | Ohyanagi et al. |
20060086997 | April 27, 2006 | Kanaya et al. |
20060211210 | September 21, 2006 | Bhat et al. |
20060244010 | November 2, 2006 | Saxler |
20060255423 | November 16, 2006 | Ryu et al. |
20060261347 | November 23, 2006 | Ryu et al. |
20060261876 | November 23, 2006 | Agarwal et al. |
20060267021 | November 30, 2006 | Rowland et al. |
20070023781 | February 1, 2007 | Mizukami et al. |
20070066039 | March 22, 2007 | Agarwal et al. |
20070120148 | May 31, 2007 | Nogome |
20070164321 | July 19, 2007 | Sheppard |
20070205122 | September 6, 2007 | Oda et al. |
20070228505 | October 4, 2007 | Mazzola et al. |
20070241427 | October 18, 2007 | Mochizuki et al. |
20080001158 | January 3, 2008 | Das et al. |
20080006848 | January 10, 2008 | Chen et al. |
20080029838 | February 7, 2008 | Zhang et al. |
20080105949 | May 8, 2008 | Zhang et al. |
20080121993 | May 29, 2008 | Hefner et al. |
20080191304 | August 14, 2008 | Zhang et al. |
20080197439 | August 21, 2008 | Goerlach et al. |
20080230787 | September 25, 2008 | Suziki et al. |
20080246085 | October 9, 2008 | Saito et al. |
20080251793 | October 16, 2008 | Mazzola |
20080277669 | November 13, 2008 | Okuno et al. |
20080296587 | December 4, 2008 | Yamamoto et al. |
20080296771 | December 4, 2008 | Das et al. |
20090008651 | January 8, 2009 | Okuno et al. |
20090085064 | April 2, 2009 | Rueb et al. |
20090121319 | May 14, 2009 | Zhang et al. |
20090146154 | June 11, 2009 | Zhang et al. |
20090212301 | August 27, 2009 | Zhang et al. |
20090267141 | October 29, 2009 | Matocha et al. |
20090267200 | October 29, 2009 | Gutt et al. |
20090272983 | November 5, 2009 | Kumar et al. |
20090289262 | November 26, 2009 | Zhang et al. |
20100032685 | February 11, 2010 | Zhang et al. |
20100133549 | June 3, 2010 | Zhang et al. |
20100133550 | June 3, 2010 | Zhang et al. |
20100140628 | June 10, 2010 | Zhang |
20100244047 | September 30, 2010 | Hull et al. |
20100277839 | November 4, 2010 | Nicholson et al. |
20110095301 | April 28, 2011 | Tarui |
20110204435 | August 25, 2011 | Disney |
20110207321 | August 25, 2011 | Fujiwara et al. |
1259228 | July 2000 | CN |
39 42 640 | August 1990 | DE |
4210402 | October 1992 | DE |
29504629 | June 1995 | DE |
19633183 | February 1998 | DE |
19633184 | February 1998 | DE |
19723176 | August 1998 | DE |
198 09 554 | September 1998 | DE |
198 32 329 | February 1999 | DE |
19900171 | July 1999 | DE |
10036208 | February 2002 | DE |
0 176 778 | April 1986 | EP |
0380340 | January 1989 | EP |
0 372 412 | June 1990 | EP |
0 389 863 | October 1990 | EP |
0 615 292 | September 1994 | EP |
0637069 | February 1995 | EP |
0735591 | October 1996 | EP |
0837508 | April 1998 | EP |
0 865 085 | September 1998 | EP |
0992070 | April 2000 | EP |
1 058 317 | December 2000 | EP |
1 361 614 | November 2003 | EP |
1 460 681 | September 2004 | EP |
1 503 425 | February 2005 | EP |
1 693896 | August 2006 | EP |
1 806 787 | July 2007 | EP |
1 845 561 | October 2007 | EP |
1885000 | February 2008 | EP |
2 015 364 | January 2009 | EP |
2259326 | December 2010 | EP |
60-240158 | November 1985 | JP |
62136072 | June 1987 | JP |
01117363 | May 1989 | JP |
2137368 | May 1990 | JP |
03034466 | February 1991 | JP |
03105975 | May 1991 | JP |
03157974 | July 1991 | JP |
3-225870 | October 1991 | JP |
7066433 | March 1995 | JP |
08097441 | April 1996 | JP |
08264766 | October 1996 | JP |
08316164 | November 1996 | JP |
09009522 | January 1997 | JP |
09205202 | August 1997 | JP |
11191559 | July 1999 | JP |
11238742 | August 1999 | JP |
11008399 | September 1999 | JP |
11261061 | September 1999 | JP |
11266017 | September 1999 | JP |
11274487 | October 1999 | JP |
2000049167 | February 2000 | JP |
200077682 | March 2000 | JP |
2000082812 | March 2000 | JP |
2000-252478 | September 2000 | JP |
02000252461 | September 2000 | JP |
2001 085704 | March 2001 | JP |
2001085704 | March 2001 | JP |
2000106371 | April 2001 | JP |
2002-314099 | October 2002 | JP |
2002314099 | October 2002 | JP |
2003318389 | November 2003 | JP |
2005057080 | March 2005 | JP |
2006324585 | November 2006 | JP |
2007235768 | September 2007 | JP |
2008042198 | February 2008 | JP |
2008112774 | May 2008 | JP |
WO 96/03774 | February 1996 | WO |
WO 97/08754 | March 1997 | WO |
WO 97/17730 | May 1997 | WO |
WO 97/39485 | October 1997 | WO |
WO 98/02916 | January 1998 | WO |
WO 98/02924 | January 1998 | WO |
WO 98/08259 | February 1998 | WO |
WO 98/32178 | July 1998 | WO |
WO 99/46809 | September 1999 | WO |
WO99/63591 | December 1999 | WO |
WO 00/13236 | March 2000 | WO |
WO 01/78134 | October 2001 | WO |
WO 2004/020706 | March 2004 | WO |
WO 2004/079789 | September 2004 | WO |
WO 2005/020308 | March 2005 | WO |
WO 2006/135031 | December 2006 | WO |
WO 2007/040710 | April 2007 | WO |
2012128934 | September 2012 | WO |
- Torvik et al., Electrical characterization of GaN/SiC n-p. heterojunction diodes, Appl. Phys. Lett. 72, (1998), pp. 1371-1373.
- International Preliminary Report on Patentability Corresponding to International Application No. PCT/US2010/035709; Date of Mailing: Dec. 15, 2011; 8 pages.
- International Preliminary Report on Patentability Corresponding to International Application No. PCT/US2010/035713; Date of Mailing: Dec. 15, 2011; 8 pages.
- “Insulated-gate bipolar transistor.” Wikipedia, the Free Encyclopedia. Web. Jun. 21, 2010. http://en.wikipedia.org.
- A.K. Agarwal, J.B. Casady, L.B. Rowland, W.F. Valek, and C.D. Brandt, “1400 V 4H-SiC Power MOSFET's,” Materials Science Forum vols. 264-268, pp. 989-992, 1998.
- A.K. Agarwal, J.B. Casady, L.B. Rowland, W.F. Valek, M.H. White, and C.D. Brandt, “1.1 kV 4H-SiC Power UMOSFET's,” IEEE Electron Device Letters, vol. 18, No. 12, pp. 586-588, Dec. 1997.
- A.K. Agarwal, N.S. Saks, S.S. Mani, V.S. Hegde and P.A. Sanger, “Investigation of Lateral RESURF, 6H-SiC MOSFETs,” Materials Science Forum, vols. 338-342, pp. 1307-1310, 2000.
- A.K. Agarwal, S. Seshadri, and L.B. Rowland, “Temperature Dependence of Fowler-Nordheim Current in 6H-and 4H-SiC MOS Capacitors,” IEEE Electron Device Letters, vol. 18, No. 12, Dec. 1997, pp. 592-594.
- A.V. Suvorov, L.A. Lipkin, G.M. Johnson, R. Singh and J.W. Palmour, “4H-SiC Self-Aligned Implant-Diffused Structure for Power DMOSFETs,” Materials Science Forum vols. 338-342, pp. 1275-1278, 2000.
- Agarwal et al. “A Critical Look at the Performance Advantages and Limitations of 4H-SiC Power UMOSFET Structures,” 1996 IEEE ISPSD and IC's Proc. , May 20-23, 1996, pp. 119-122.
- Asano et al., “Dynamic Characteristics of 6.2kV High Voltage 4H-SiC pn Diode with Low Loss”, Transactions of the Institute of Electrical Engineers of Japan, Part D Inst. Electr. Eng. Japan, vol. 123D, No. 5, May 2003, pp. 623-627, XP8124184.
- Ayalew, T, “Dissertation of Tesfaye Ayalew”, Section 4.4.3.1 MPS Diode Structure, SiC Semiconductor Devices Technology, Modeling, and Simulation, 2006.
- Baliga “Insulated Gate Biopolar Transistor” Power Semiconductor Devices. PWS Publishing Company, Boston, MA. 426-502 (1996).
- Baliga “Power MOSFET” Power Semiconductor Devices. PWS Publishing Company, Boston, MA 335-425 (1996).
- Baliga, Power Semiconductor Devices, Chapter 7, PWS Publishing, 1996.
- Bhatnagar et al. “Comparison of 6H-SiC, 3C-SiC, and Si for Power Devices,” IEEE Transactions on Electron Devices, vol. 40, No. 3, Mar. 1993, pp. 645-655.
- Buchner et al., “Laser Recrystallization of Polysilicon for Improved Device Quality”, Springer Proceedings in Physics, vol. 35, Polycrystalline Semiconductors, pp. 289-294.
- Capano, M.A., et al., Ionization Energies and Electron Mobilities in Phosphorus—and Nitrogen-Implanted 4H-Silicon Carbide, IEEE ICSCRM Conference 1999, Research Triangle Park, North Carolina (Oct. 10-13, 1999).
- Chakraborty et al. “Interface Properties of N2O-annealed SiO2/SiC system,” Proceedings IEEE Hong Kong Electron Devices Meeting. Jun. 24, 2000, pp. 108-111.
- Chang et al. “Observation of a Non-stoichiometric Layer at the Silicon Dioxide—Silicon Carbide Interface: Effect of Oxidation Temperature and Post-Oxidation Processing Conditions,” Mat. Res. Soc. Symp. Proc. vol. 640, 2001.
- Chen et al. “Theoretical Analysis of Current Crowding Effect in Metal/AlGaN/GaN Schottky Diodes and Its Reduction by Using Polysilicon in Anode,” Chin. Phys. Lett., vol. 24, No. 7 (2007) pp. 2112-2114.
- Chinese Office Action dated Jan. 22, 2010, corresponding to Chinese Patent Application No. 200780029460.5, 7 pages.
- Cho et al. “Improvement of charge trapping by hydrogen post-oxidation annealing in gate oxide of 4H-SiC methel-oxide-semiconductor capacitors,” Applied Physics Letters. vol. 77, No. 8, pp. 1215-1217 (Aug. 21, 2000).
- Chung et al. “Effects of anneals in ammonia on the interface trap density near athe band edges in 4H-silicon carbide metal-oxide-semiconductor capacitors,” Applied Physics Letters. vol. 77, Nov. 27, 2000, pp. 3601-3603.
- Chung et al., “The Effect of Si:C Source Ratio on SiO2/SiC Interface State Density for Nitrogen Doped 4H and 6H-SiC,” Materials Science Forum. (2000) vols. 338-342, pp. 1097-1100.
- International Search Report and Written Opinion for corresponding International Application No. PCT/US2004/004982, dated Jul. 22, 2004.
- International Search Report for PCT/US01/30715.
- International Search Report for PCT/US01/42414, dated Apr. 23, 2002.
- International Search Report for PCT/US02/11691 dated Dec. 4, 2002.
- D. Alok, E. Arnold, and R. Egloff, “Process Dependence of Inversion Layer Mobility in 4H-SiC Devices,” Materials Science Forum, vols. 338-342, pp. 1077-1080, 2000.
- Dahlquist et al. “A 2.8kV, Forward Drop JBS Diode with Low Leakage,” Materials Science Forum, vols. 338-342, (2000) pp. 1179-1182.
- Das, Mrinal K. Graduate thesis entitled, Fundamental Studies of the Silicon Carbide MOS Structure. Purdue University, 1999.
- Dastidar, Sujoyita, A Study of P-Type Activation in Silicon Carbide, Thesis (Purdue University, May 1998).
- De Meo et al., “Thermal Oxidation of SiC in N2O”, J. Electrochem. Soc., vol. 141, 1994, pp. L150-L152.
- del Prado et al. “Full Composition Range Silicon Oxynitride Films Deposited by ECR-PECVD at Room Temperatures,” Thin Solid Films. vol. 343-344 (1999) p. 437-440.
- Dimitrijev et al., “Nitridation of Silicon-Dioxide Films Grown on 6H Silicon Carbide”, IEEE Electronic Device Letters, vol. 18, No. 5, May 5, 1997, pp. 175-177.
- European Search Report for corresponding EP patent application No. 09177558.5 dated Feb. 22, 2010.
- European Search Report for corresponding EP patent application No. 09163424.6 dated Apr. 9, 2010.
- European Search Report; Application No. EP07120038; Jun. 16, 2008.
- Extended European Search Report (12 pages) corresponding to European Application No. 07112298; Dated Feb. 18, 2009.
- Fisher, C.A. et al., “The performance of high-voltage field relieved Schottky barrier diodes”, IEE Proceedings, vol. 132:6, Pt. I, pp. 257-260 (Dec. 1985).
- Fukuda et al. “Improvement of SiO2/4H-SiC Interface Using High-Temperature Hydrogen Annealing at Low Pressure and Vacuum Annealing,” Jpn J. Appl. Phys. vol. 38, Apr. 1999, pp. 2306-2309.
- Fukuda et al. “Improvement of SiO2/4H-SiC Interface by Using High Temperature Hydrogen Annealing at 1000° C.,” Extended Abstracts of the International Conference on Solid State Devices and Materials. Japan Society of Applied Physics, Tokyo, Japan, Sep. 1998.
- G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, M. Di Ventra, S.T. Pantelides, L.C. Feldman, and R.A. Weller, “Effect of nitric oxide annealing on the interface trap densities near the band edges in the 4H polytype of silicon carbide,” Applied Physics Letters, vol. 76, No. 13, pp. 1713-1715, Mar. 2000.
- G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, R.K. Chanana, R.A. Weller, S.T. Pantelides, L.C. Feldman, O.W. Holland, M.K. Das, and J.W. Palmour, “Improved Inversion Channel Mobility for 4H-SiC MOSETs Following High Temperature Anneals in Nitric Oxide,” IEEE Electron Device Letters, vol. 22, No. 4, Apr. 2001.
- H.F. Li, S. Dimitrijev, H.B. Harrison, D. Sweatman, P.T. Tanner. “Improving SiO2 Grown on P-Type 4H-SiC by NO Annealing,” Materials Science Forum. vols. 264-268 (1998) pp. 869-872.
- http://www.elec.gla.ac.uk; The Insulated Gate Bipolar Transistor (IGBT); Feb. 14, 2007.
- Hubel, K, “Hybrid design improves diode robustness and boosts efficiency,” Compoundsemiconductor.net, 2006.
- Hull et al., “Drift-Free 10-kV, 20-A 4H-SiC PiN Diodes,” Journal of Electronic Materials, vol. 34, No. 4, 2005, pp. 341-344.
- International Preliminary Report on Patentability (9 pages) corresponding to International Application No. PCT/US2007/010192; Mailing Date: Sep. 23, 2008.
- International Search Report and Written Opinion (13 pages) corresponding to International Application No. PCT/US2008/010538; Mailing Date: Dec. 22, 2008.
- International Search Report and Written Opinion (14 pages) corresponding to International Application No. PCT/US2010/020071; Mailing Date: Mar. 26, 2010.
- International Search Report and Written Opinion (14 pages) corresponding to International Application No. PCT/US2009/065251; Mailing Date: Jun. 1, 2010.
- International Search Report and Written Opinion (16 pages) corresponding to International Application No. PCT/US2009/003089; Mailing Date: Aug. 20, 2009.
- International Search Report and Written Opinion for PCT/US2007/014139; Feb. 4, 2008.
- International Search Report and Written Opinion for PCT/US2010/025053 mailed on Jul. 2, 2010.
- International Search Report and Written Opinion, International Application No. PCT/US2009/000734, Apr. 23, 2009.
- International Search Report, PCT/US2008/008574, Sep. 26, 2008.
- Invitation to Pay Additional Fees for PCT/US2007/010192; Oct. 29, 2007.
- Invitation to Pay Additional Fees for PCT/US2010/025053 mailed on May 3, 2010.
- J. Tan, J.A. Cooper, Jr., and Mr. R. Melloch, “High-Voltage Accumulation-Layer UMOSFETs in 4H-SiC,” IEEE Electron Device Letters, vol. 19, No. 12, pp. 487-489, Dec. 1998.
- J.B. Casady, A.K. Agarwal, L.B. Rowland, W.F. Valek, and C.D. Brandt, “900 V DMOS and 1100 V UMOS 4H-SiC Power FETs,” IEEE Device Research Conference, Ft. Collins, CO Jun. 23-25, 1997.
- J.N. Shenoy, J.A. Cooper and M.R. Meelock, “High-Voltage Double-Implanted Power MOSFETs in 6H-SiC,” IEEE Electron Device Letters, vol. 18, No. 3, pp. 93-95, Mar. 1997.
- J.T. Richmond, S. Ryu, A.K. Agarwal and J.W. Palmour, “Hybrid 4H-SiC MOS Gated Transistor (MGT)” (admitted prior art).
- Jamet, et al. “Physical properties of N2O and NO-nitrided gate oxides grown on 4H SiC,” Applied Physics Letters. vol. 79, No. 3, Jul. 16, 2001, pp. 323-325.
- K. Ueno and Tadaaki Oikawa, “Counter-Doped MOSFET's of 4H-SiC,” IEEE Electron Device Letters, vol. 20, No. 12, pp. 624-626, Dec. 1999.
- K. Ueno, R. Asai, and T. Tsuji. “4H-SiC MOSFET's Utilizing the H2 Surface Cleaning Technique.” IEEE Electron Device Letters, vol. 19, No. 7, Jul. 1998, pp. 244-246.
- Katsunori Ueno, Tatsue Urushidani, Kouicki Hahimoto, and Yasukazu Seki. “The Guard-Ring Termination for the High-Voltage SiC Schottky Barrier Diodes”. IEEE Electron Device Letters. vol. 16. No. 7, Jul. 1995, pp. 331-332.
- Kinoshita et al., “Guard Ring Assisted RESURF: A New Termination Structure Providing Stable and High Breakdown Voltage for SiC Power Devices,” Tech. Digest of ISPSD '02, pp. 253-256.
- Kobayashi et al. “Dielectric Breakdown and Current Conduction of Oxide/Nitride/Oxide Multi-Layer Structures,” 1990 IEEE Symposium on VLSI Technology. pp. 119-120.
- Krishnaswami et al., “High Temperature characterization of 4H-SiC bipolar junction transistors”, Materials Science Forum, Aedermannsfdorf, CH, vol. 527-529, Jan. 1, 2006, pp. 1437-1440, XP009138720, ISSN: 0255-5476.
- L.A. Lipkin and J.W. Palmour, “Low interface state density oxides on p-type SiC,” Materials Science Forum vols. 264-268, pp. 853-856, 1998.
- Lai et al., “Interface Properties of N2O-Annealed NH3-Treated 6H-SiC MOS Capacitor,” Proc. 1999 IEEE Hong Kong Electron Devices Meeting, Jun. 26, 1999, pp. 46-49.
- Leonhard et al. “Long term stability of gate-oxides on n- and p-type silicon carbide studied by charge injection techniques,” Materials Science Engineering, vol. 46, No. 1-3, Apr. 1997, pp. 263-266.
- Levinshtein et al., “On the homogeneity of the turn-on process in high voltage 4H-SiC thyristors”, Solid-State Electronics, vol. 49, No. 2, Feb. 1, 2005, pp. 233-237, XP004645018 Elsevier Science Publishers, Barking (GB) ISSN: 0038-1101.
- Lipkin et al. “Insulator Investigation on SiC for Improved Reliability,” IEEE Transactions on Electron Devices. vol. 46, No. 3, Mar. 1999, pp. 525-532.
- Lipkin et al. “Challenges and State-of-the-Art Oxides in SiC,” Mat. Res. Soc. Symp. Proc. vol. 640, 2001, pp. 27-29.
- Losee et al., “Degraded Blocking Performance of 4H-SiC Rectifiers Under High dV/dt Conditions”, Proceedings of 17th International Symposium on Power Semiconductor Devices & IC's, 4 pages (May 23-26, 2005). XP010820730.
- Losee et al., “High-Voltage 4H-SiC PiN Rectifiers with Single-Implant, Multi-Zone JTE Termination”, Power Semiconductor Devices and ICs, 2004 Proceedings. ISPSB '04. The 16th International Symposium on Kitakyushu Int. Conf. Center, Japan May 24-27, 2004, Piscataway, NJ, USA, IEEE, May 24, 2004, pp. 301-304, XP010723398.
- M. Das et al., “A 13 kV 4H-SiC N-Channel IGBT with Low Rdiff, on and Fast Switching” presented at: International Conference on Silicon Carbide and Related Materials )ICSCRM), Otsu, Japan, Oct. 14-19, 2007.
- M. K. Das, L.A. Lipkin, J.W. Palmour, G.Y. Chung, J.R. Williams, K. McDonald, and L.C. Feldman, “High Mobility 4H-SiC Inversion Mode MOSFETs Using Thermally Grown, NO Annealed SiO2,” IEEE Device Research Conference, Denver, CO Jun. 19-21, 2000.
- M.A. Capano, S. Ryu, J.A. Cooper, Jr., M.R. Melloch, K. Rottner, S. Karlsson, N. Nordell, A. Powell, and D.E. Walker, Jr., “Surface Roughening in Ion Implanted 4H-Silicon Carbide,” Journal of Electronic Materials, vol. 28, No. 3, pp. 214-218, Mar. 1999.
- M.K. Das, J.A. Cooper, Jr., M.R. Melloch, and M.A. Capano, “Inversion Channel Mobility in 4H- and 6H-SiC MOSFETs,” IEEE Semiconductor Interface Specialists Conference, San Diego, CA, Dec. 3-5, 1998.
- Ma et al. “Fixed and trapped charges at oxide-nitride-oxide heterostructure interfaces formed by remote plasma enhanced chemical vapor deposition,” J. Vac. Sci. Technol. B. vol. 11, No. 4, Jul./Aug. 1993, pp. 1533-1540.
- Mondal et al. “An Integrated 500-V Power DSMOSFET/Antiparallel Rectifier Device with Improved Diode Reverse Recovery Characteristics,” IEEE Electron Device Letters, vol. 23, No. 9, Sep. 2002, pp. 562-564.
- Motorola Power MOSFET Transistor Databook, 4th edition. Motorola, INc., 1989, pp. 2-5-4-2-5-7.
- Mutin, P. Herbert, “Control of the Composition and Structure of Silicon Oxycarbide and Oxynitride Glasses Derived from Polysiloxane Precursors,” Journal of Sol-Gel Science and Technology. vol. 14 (1999) pp. 27-38.
- Myer-Ward et al. “Turning of Basal Plane Dislocations During Epitaxial Growth on 4 off-axis 4h-SiC” 7th European Conference on Silicon Carbide and Related Materials, Barcelona-Spain, Sep. 7-11, 2008 retrieved from http://ecscrm08.com/invited—presentations.html , retrieved Jul. 1, 2009.
- Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, International Search Report, Written Opinion of the International Searching Authority, PCT/US2010/026632, Date of Mailing: Oct. 8, 2010, 16 pages.
- Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, International Search Report, Written Opinion of the International Searching Authority, PCT/US2010/035713, Date of Mailing: Jul. 27, 2010, 14 pages.
- Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, International Search Report, Written Opinion of the International Searching Authority, PCT/US2010/042075, Date of Mailing: Sep. 24, 2010, 15 pages.
- Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, PCT/US2010/028612, Jun. 17, 2010.
- Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration; International Search Report; Written Opinion of the International Searching Authority, PCT/US2008/004239, Mar. 2, 2009.
- P.J. Tobin, Y. Okada, S. A. Ajuria, V. Lakhotia, W.A. Feil, and R. I. Hedge, “Furnace formation of silicon oxynitride thin dielectrics in nitrous oxide (N20): The role of nitric oxide (NO).” Journal of Applied Physics. vol. 75, No. 3, Feb. 1, 1994, pp. 1811-1817.
- P.M. Shenoy and B.J. Baliga, “The Planar 6H-SiC ACCUFET: A New High-Voltage Power MOSFET Structure,” IEEE Electron Device Letters, vol. 18, No. 12, pp. 589-591, Dec. 1997.
- P.T. Lai, Supratic Chakraborty, C.L. Chan, and Y.C. Cheng, “Effects of nitridation and annealing on interface properties of thermally oxidized SiO2/SiC metal-oxide-semiconductor system,” Applied Physics Letters, vol. 76, No. 25, pp. 3744-3746, Jun. 2000.
- Palmour et al. “SiC Device Technology: Remaining Issues,” Diamond and Related Materials. vol. 6, 1997, pp. 1400-1404.
- Palmour J: “Silicon Carbide npnp Thyristors”, NASA Technical Briefs—Electronics and Computers, Dec. 1, 2000, John H. Glenn Research Center, Cleveland, Ohio (US); XP-002567723, http://www.techbriefs.com/component/content/article/7031-lew-16750?tmpl=component&print=1&page= retrieved on Feb. 10, 2010).
- Panknin et al., “Electrical and microstructural properties of highly boron-implantation doped 6H-SiC”, Journal of Applied Physics 89:6, pp. 3162-3167 (Mar. 15, 2001).
- Pantelides et al., “Atomic-Scale Engineering of the SiC-SiO2 Interface,” Materials Science Forum. (2000) vols. 338-342, pp. 1133-1136.
- Patel, R., et al., Phosphorus-Implanted High-Voltage N.sup.+ P 4H-SiC Junction Rectifiers, Proceedings of 1998 International Symposium on Poer Semiconductor Devices & ICs, pp. 387-390 (Kyoto).
- Q. Zhang et al. “12 kV 4H-SiC p-IGBTs with Record Low Specific On-Resistance” presented at: International Conference on Silicon Carbide and Related Materials (ICSCRM), Otsu, Japan, Oct. 14-19, 2007.
- R. Schörner, P. Friedrichs, D. Peters, and D. Stephani, “Significantly Improved Performance of MOSFETs on Silicon Carbide Using the 15R-SiC Polytype,” IEEE Electron Device Letters, vol. 20, No. 5, pp. 241-244, May 1999.
- R. Schörner, P. Friedrichs, D. Peters, H. Mitlehner, B. Weis, and D. Stephani, “Rugged Power MOSFETs in 6H-SiC with Blocking Capability up to 1800 V,” Materials Science Forum vols. 338-342, pp. 1295-1298, 2000.
- Ranbir Singh, Sei-Hyung Ryu and John W. Palmour, “High Temperature, High Current, 4H-SiC Accu-DMOSFET,” Materials Science Forum vols. 338-342, pp. 1271-1274, 2000.
- Rao et al. “Al and N Ion Implantations in 6H-SiC,” Silicon Carbide and Related Materials. 1995 Conf, Kyoto, Japan. Published 1996.
- Rao et al. “P-N Junction Formation in 6H-SiC by Acceptor Implantation into N-Type Substrate,” Nuclear Instruments and Methods in Physics Research B. vol. 106, 1995, pp. 333-338.
- Rao et al. “Silane overpressure post-implant annealing of A1 dopants in SiC: Cold wall CVD apparatus” Applied Surface Science 252: 3837-3842 (2006).
- Rao, “Maturing ion-implantation technology and its device applications in SiC”, Solid State Electronics 47:2, pp. 213-222, Elsevier Science Publishers (Feb. 2003).
- Ryu et al. Article and Presentation: “27 mΩ-cm2, 1.6 kV Power DiMOSFETs in 4H-SiC,” Proceedings of the 14 International Symposium on Power Semiconductor Devices & ICs 2002, Jun. 4-7, 2002, Santa Fe, NM.
- S. Sridevan and B. Jayant Baliga, “Lateral N-Channel Inversion Mode 4H-SiC MOSFET's,” IEEE Electron Device Letters, vol. 19, No. 7, pp. 228-230, Jul. 1998.
- S. Sridevan, P.K. McLarty, and B.J. Baliga, “On the Presence of Aluminum in Thermally Grown Oxides on 6H-Silicon Carbide,” IEEE Electron Device Letters, vol. 17, No. 3, pp. 136-138, Mar. 1996.
- S.M. Sze Semiconductor Devices, Physics and Technology. 2nd Edition, © 2002 John Wiley and Sons, p. 130.
- S.T. Pantelides, “Atomic Scale Engineering of SiC Dielectric Interfaces,” DARPA/MTO High Power and ONR Power Switching MURI Reviews, Rosslyn, VA, Aug. 10-12, 1999.
- Senzaki et al.; Effects of Pyrogenic Reoxidation Annealing on Inversion Channel Mobility of 4H-SiC Metal-Oxide-Semiconductor Field-Effect Transistor Fabricated on (1120) Face; Japanese Journal of Applied Physics, Japan Society of Applied Physics, Tokyo, JP; vol. 40, No. 11B, Part 2; Nov. 2001; pp. L1201-L1203.
- Singh, R. and J.W. Palmour, “Planer Terminations in 4H-SiC Schottky Diodes with Low Leakage and High Yields, ”IEEE International Symposium on Power Semiconductor Devices and ICs, 1997, pp. 157-160.
- Stengl et al., “Variation of Lateral Doping—A New Concept to Avoid High Voltage Breakdown of Planar Junctions”, International Electron Devices Meeting; Washington, Dec. 1-4, 1985; pp. 154-157, XP002013050.
- Stengl et al., Variation of Lateral Doping as a Field Terminator for High-Voltage Power Devices, IEEE Transactions on Electron Devices; vol. ED-33, No. 3, Mar. 1986, pp. 426-428, XP000836911.
- Streetman “Bipolar Junction Transistors” Solid State Electronic Devices. Prentice Hall, Englewood Cliffs, NJ. 228-284 (1980).
- Sugawara et al., “3.6 kV 4H-SiC JBS Diodes with Low RonS”. Materials Science Forum, vols. 338-342:2, pp. 1183-1186 (2000). XP-000944901.
- Sundaresan et al., “Ultra-low resistivity A1 + implanted 4H-SiC obtained by microwave annealing and a protective graphite cap”, Solid-State Electronics vol. 52, 2008, pp. 140-145, XP022360431.
- Suzuki et al. “Effect of Post-oxidation-annealing in Hydrogen on SiO2/4H-SiC Interface,” Materials Science Forum, vols. 338-342 (2000) 1073-6.
- Sze, S.M. Physics of Semiconductor Devices, John Wiley & Sons, p. 383-390, 1981.
- Thomas et al., “Annealing of Ion Implantation Damage in SiC Using a Graphite Mask”, Material Research Society Symposium Y Proceedings vol. 572, Spring 1999, pp. 45-50.
- Treu et al. “A Surge Current Stable and Avalanche Rugged SiC Merged pn Schottky Diode Blocking 600V Especially Suited for PFC Applications” Materials Science Forum vols. 527-529: 1155-1158 (2006).
- V.R. Vathulya and M.H. White, “Characterization of Channel Mobility on Implanted SiC to Determine Polytype Suitability for the Power DIMOS Structure,” Electronic Materials Conference, Santa Barbara, CA, Jun. 30-Jul. 2, 1999.
- V.R. Vathulya, H. Shang, and M.H. White, “A Novel 6H-SiC Power DMOSFET with Implanted P-Well Spacer,” IEEE Electronic Device Letters, vol. 20, No. 7, Jul. 1999, pp. 354-356.
- V.V. Afanasev, M. Bassler, G. Pensl, and M. Schulz, “Intrinsic SiC/SiO2 Interface States,” Phy. Stat. Sol. (a), vol. 162, pp. 321-337, 1997.
- Vassilevski et al., “High Voltage Silicon Carbide Schottky Diodes with Single Zone Junction Termination Extension”, Materials Science Forum, 2007 Trans Tech Publications, vols. 556-557 (2007) pp. 873-876, XP8124186.
- Vassilevski et al., “Protection of selectively implanted and patterned silicon carbide surfaces with graphite capping layer during post-implantation annealing,” Institute of Physics Publishing, Semicond. Sci. Technol. 20 (2005) 271-278.
- Wang et al. “High Temperature Characteristics of High-Quality SiC MIS Capacitors with O/N/O Gate Dielectric,” IEEE Transactions on Electron Devices. vol. 47, No. 2, Feb. 2000, pp. 458-462.
- Williams et al. “Passivation of the 4H-SiC/SiO2 Interface with Nitric Oxide,” Materials Science Forum. vols. 389-393 (2002), pp. 967-972.
- Xu et al. “Improved Performance and Reliability of N2O-Grown Oxynitride on 6H-SiH,” IEEE Electron Device Letters. vol. 21, No. 6, Jun. 2000, p. 298-300.
- Y. Li et al., “High Voltage (3 kV) UMOSFETs in 4H-SiC,” Transactions on Electron Devices, vol. 49, No. 6, Jun. 2002.
- Y. Wang, C. Weitzel, and M. Bhatnagar, “Accumulation-Mode SiC Power MOSFET Design Issues,” Materials Science Forum, vols. 338-342, pp. 1287-1290.
- Yilmaz, “Optimization and Surface Charge Sensitivity of High Voltage Blocking Structures with Shallow Junctions,” IEEE Transactions on Electron Devices, vol. 38, No. 3, Jul. 1991, pp. 1666-1675.
- Zhang et al., “A 10-kV Monolithic Darlington Transistor with βforced of 336 in 4H-SiC,” IEEE Electron Device Letters, vol. 30, No. 2, pp. 142-144, XP011240662.
- Zhang et al.; Design and Fabrications of High Voltage IGBTs on 4H-SiC; 2006 IEEE Proceedings of the 18th International Symposium on Power Semiconductor Devices & ICs, Napels, Italy Jun. 4-8, 2006, pp. 1-4.
- Second European Examination Report Corresponding to International Application No. 07112298.0-2203; Date of Mailing: Jan. 16, 2012; 7 pages.
- International Search Report and the Written Opinion of the International Searching Authority corresponding to Application No. PCT/US2011/027383; Date of Mailing: May 20, 2011; 8 Pages.
- Notification Concerning Transmittal of International Preliminary Report on Patentability, issued in corresponding application No. PCT/US2011/027383, Mailed Sep. 20, 2012, 7 pages.
- International Preliminary Report on Patentability Corresponding to International Application No. PCT/US2011/031150; Date of Mailing: Oct. 26, 2012; 8 Pages.
- Itoh “Analysis of Schottky Barrier Heights of Metal/SiC Contacts and Its Possible Application to High-Voltage Rectifying Devices” Phys. Stat. Sol. (A), vol. 162, 1997, pp. 225-245.
- Itoh “Excellent Reverse Blocking Characteristics of High-Voltage 4H-SiC Schottky Rectifiers with Boron-Implanted Edge Termination” IEEE Electron Device Letters, vol. 17, No. 3, Mar. 1996, pp. 139-141.
- Karlsteen et al., “Electrical Properties of Inhomogeneous SiC MIS Structures,” Journal of Electronic Materials, vol. 24, No. 7, 1995, pp. 853-861.
- Matsunami, “Step-Controlled Epitaxial Growth of SiC: High Quality Honnoepitaxy,” Materials Science and Engineering, vol. B201997, Oct. 27, 1996, pp. 153-173.
- Mohammad, “Near Ideal Plantinum-GaN Schottky Diodes,” Electronic Letters, Mar. 14, 1996, vol. 32, No. 6, pp. 598-599.
- Unknown, “Data Book for Metals” published as early as Mar. 19, 2009, p. 194.
- Wang, “High Barrier Heigh GaN Schottky Diodes: Pt/GaN and Pd/GaN,” Applied Phys. Letters, vol. 68, No. 9, Feb. 26, 1996, pp. 1267-1269.
- Wilamoski, “Schottky Diodes with High Breakdown Voltages,” Solid-State Electronics, vol. 26, No. 5, 1983, pp. 491-493.
- Non-Final Office Action for U.S. Appl. No. 13/229,749 mailed Jan. 25, 2013, 29 pages.
- Non-Final Office Action for U.S. Appl. No. 13/229,750 mailed Oct. 2, 2012, 15 pages.
- Non-Final Office Action for U.S. Appl. No. 13/229,752 mailed Mar. 21, 2013, 17 pages.
- Notice of Allowance for U.S. Appl. No. 13/229,750 mailed Jan. 31, 2013, 7 pages.
- Notice of Allowance for U.S. Appl. No. 13/229,750, mailed May 14, 2013, 8 pages.
- Final Office Action for U.S. Appl. No. 13/229,749, mailed Jun. 10, 2013, 33 pages.
- International Search Report for PCT/US2012/054091 mailed Dec. 5, 2012, 12 pages.
- International Search Report for PCT/US2012/054092 mailed Dec. 5, 2012, 12 pages.
- International Search Report for PCT/US2012/054093 mailed Dec. 5, 2012, 12 pages.
- Baliga, B.J., “The Pinch Rectifier: A Low-Forward-Drop High-Speed Power Diode,” IEEE Electron Device Letters, vol. EDL-5, No. 6, Jun. 1984, 3 pages.
- Restriction Requirement for U.S. Appl. No. 12/124,341, mailed Jul. 13, 2010, 6 pages.
- Non-Final Office Action for U.S. Appl. No. 12/124,341, mailed Oct. 18, 2010, 7 pages.
- Final Office Action for U.S. Appl. No. 12/124,341, mailed Jun. 21, 2011, 8 pages.
- Notice of Allowance for U.S. Appl. No. 12/124,341, mailed Apr. 9, 2012, 8 pages.
- Japanese Office Action for Japanese Patent Application No. 2011-510504, mailed Mar. 26, 2013, 2 pages.
- European Search Report for European Patent Application No. 09750952.5-1235, mailed Mar. 8, 2012, 5 pages.
- International Preliminary Report on Patentability for International Patent Application No. PCT/US2009/003089, mailed Nov. 23, 2010, 7 pages.
- International Search Report for Patent Application No. PCT/2012/27874, mailed Jul. 13, 2012, 7 pages.
- Non-Final Office Action for U.S. Appl. No. 13/547,014, mailed Nov. 9, 2012, 13 pages.
- Final Office Action for U.S. Appl. No. 13/547,014, mailed Apr. 4, 2013, 8 pages.
- Japanese Office Action for Japanese Patent Application No. 2011-510504, mailed Apr. 26, 2013, 8 pages.
- Notice of Allowance for U.S. Appl. No. 13/229,749, mailed Aug. 20, 2013, 9 pages.
- Notice of Allowance for U.S. Appl. No. 13/229,750, mailed Aug. 23, 2013, 8 pages.
- Final Office Action for U.S. Appl. No. 13/229,752, mailed Jul. 29, 2013, 6 pages.
- Advisory Action for U.S. Appl. No. 13/547,014, mailed Jul. 31, 2013, 3 pages.
- Notice of Allowance for U.S. Appl. No. 13/547,014, mailed Aug. 30, 2013, 8 pages.
- Notice of Allowance for U.S. Appl. No. 13/229,752, mailed Oct. 10, 2013, 10 pages.
- Notice of Allowance for U.S. Appl. No. 13/229,749, mailed Oct. 28, 2013, 11 pages.
- Notice of Allowance for U.S. Appl. No. 13/229,752, mailed Jan. 13, 2014, 5 pages.
- Office Action for Japanese Patent Application No. 2012-557150, mailed Jan. 29, 2014, 9 pages.
- International Preliminary Report on Patentability for International Patent Application No. PCT/US2012/054091, mailed Mar. 20, 2014, 7 pages.
- International Preliminary Report on Patentability for International Patent Application No. PCT/US2012/054092, mailed Mar. 20, 2014, 7 pages.
- International Preliminary Report on Patentability for International Patent Application No. PCT/US2012/054093, mailed Mar. 20, 2014, 7 pages.
- European Search Report for European Patent Application No. 11753868.6-1552, mailed Mar. 25, 2014, 9 pages.
- Non-Final Office Action for U.S. Appl. No. 14/087,416, mailed May 23, 2014, 11 pages.
- Perez, Raul et al., “Planar Edge Termination Design and Technology, Considerations for 1.7-kV 4H-Sic PiN Diodes,” IEEE Transactions on Electron Devices, vol. 53, No. 10, Oct. 2005, IEEE, pp. 2309-2316.
- Office Action for Taiwanese Patent Application No. 101133188, mailed Aug. 14, 2014, 18 pages.
- Final Office for U.S. Appl. No. 14/087,416, mailed Sep. 30, 2014, 9 pages.
- Non-Final Office Action for U.S. Appl. No. 14/169,266, mailed Oct. 22, 2014, 8 pages.
- Office Action for Taiwanese Patent Application No. 101133195, mailed Sep. 1, 2014, 27 pages.
- Office Action for Taiwanese Patent Application No. 101133190, mailed Sep. 24, 2014, 16 pages.
- Decision of Grant for Japanese Patent Application No. 2012-557150, issued Nov. 5, 2014, 6 pages.
- Advisory Action for U.S. Appl. No. 14/087,416, mailed Dec. 29, 2014, 3 pages.
- Extended European Search Report for European Patent Application No. 14184967.9, mailed Feb. 6, 2015, 6 pages.
- Non-Final Office Action for U.S. Appl. No. 14/499,390, mailed Feb. 20, 2015, 15 pages.
Type: Grant
Filed: Mar 8, 2010
Date of Patent: May 12, 2015
Patent Publication Number: 20110215338
Assignee: Cree, Inc. (Durham, NC)
Inventor: Qingchun Zhang (Cary, NC)
Primary Examiner: Stephen W Smoot
Assistant Examiner: Sun M Kim
Application Number: 12/719,412
International Classification: H01L 29/47 (20060101); H01L 29/16 (20060101); H01L 29/165 (20060101); H01L 29/66 (20060101); H01L 29/861 (20060101); H01L 29/872 (20060101); H01L 29/06 (20060101);