Patents by Inventor Rahul Manepalli

Rahul Manepalli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240113087
    Abstract: An apparatus is provided which comprises: an interposer comprising glass, one or more redistribution layers on a first interposer surface, one or more conductive contacts on a second interposer surface opposite the first interposer surface, one or more vias through the interposer coupling at least one of the conductive contacts on the second interposer surface with the redistribution layers on the first interposer surface, an integrated circuit device embedded within a cavity in the interposer between the first and second interposer surfaces, the embedded integrated circuit device coupled with a first redistribution layers surface, a stack of two or more integrated circuit devices coupled with a second redistribution layers surface opposite the first redistribution layers surface, and mold material surrounding at least one side of the stack of two or more integrated circuit devices. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Applicant: Intel Corporation
    Inventors: Brandon Marin, Gang Duan, Srinivas Pietambaram, Suddhasattwa Nad, Jeremy Ecton, Debendra Mallik, Ravindranath Mahajan, Rahul Manepalli
  • Publication number: 20240088052
    Abstract: A die assembly is disclosed. The die assembly includes a die, one or more die pads on a first surface of the die and a die attach film on the die where the die attach film includes one or more openings that expose the one or more die pads and that extend to one or more edges of the die.
    Type: Application
    Filed: November 17, 2023
    Publication date: March 14, 2024
    Inventors: Bai NIE, Gang DUAN, Srinivas PIETAMBARAM, Jesse JONES, Yosuke KANAOKA, Hongxia FENG, Dingying XU, Rahul MANEPALLI, Sameer PAITAL, Kristof DARMAWIKARTA, Yonggang LI, Meizi JIAO, Chong ZHANG, Matthew TINGEY, Jung Kyu HAN, Haobo CHEN
  • Patent number: 11923312
    Abstract: A die assembly is disclosed. The die assembly includes a die, one or more die pads on a first surface of the die and a die attach film on the die where the die attach film includes one or more openings that expose the one or more die pads and that extend to one or more edges of the die.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: March 5, 2024
    Assignee: Intel Corporation
    Inventors: Bai Nie, Gang Duan, Srinivas Pietambaram, Jesse Jones, Yosuke Kanaoka, Hongxia Feng, Dingying Xu, Rahul Manepalli, Sameer Paital, Kristof Darmawikarta, Yonggang Li, Meizi Jiao, Chong Zhang, Matthew Tingey, Jung Kyu Han, Haobo Chen
  • Publication number: 20240030147
    Abstract: Panel-level high performance computing (HPC) computing architectures and methods for making the same are disclosed. Panel architectures with and without glass cores comprise dielectric layers with interconnect structures (vias, conductive traces) to translate die-level pinouts arranged at a fine pitch to panel-level pinouts arranged at a coarser pitch. Local interconnects and local interconnect components provide for electrical communication between integrated circuit dies in a panel. Coreless panel architectures can comprise a glass reinforcement layer to provide additional mechanical stiffness. The glass reinforcement layer can have interconnect structures and a local interconnect component. Panel embodiments with a glass core or glass reinforcement layer can comprise waveguides and channel a liquid coolant therethrough, and can further comprise photonic integrated circuits. Panel-level manufacturing techniques can enable panels having dimensions larger (e.g.
    Type: Application
    Filed: July 22, 2022
    Publication date: January 25, 2024
    Applicant: Intel Corporation
    Inventors: Gang Duan, Hamid R. Azimi, Rahul Manepalli, Srinivas V. Pietambaram
  • Publication number: 20240030065
    Abstract: Panel-level high performance computing (HPC) computing architectures and methods for making the same are disclosed. Panel architectures with and without glass cores comprise dielectric layers with interconnect structures (vias, conductive traces) to translate die-level pinouts arranged at a fine pitch to panel-level pinouts arranged at a coarser pitch. Local interconnects and local interconnect components provide for electrical communication between integrated circuit dies in a panel. Coreless panel architectures can comprise a glass reinforcement layer to provide additional mechanical stiffness. The glass reinforcement layer can have interconnect structures and a local interconnect component. Panel embodiments with a glass core or glass reinforcement layer can comprise waveguides and channel a liquid coolant therethrough, and can further comprise photonic integrated circuits. Panel-level manufacturing techniques can enable panels having dimensions larger (e.g.
    Type: Application
    Filed: July 22, 2022
    Publication date: January 25, 2024
    Applicant: Intel Corporation
    Inventors: Gang Duan, Hamid R. Azimi, Rahul Manepalli, Srinivas V. Pietambaram
  • Publication number: 20240030204
    Abstract: Panel-level high performance computing (HPC) computing architectures and methods for making the same are disclosed. Panel architectures with and without glass cores comprise dielectric layers with interconnect structures (vias, conductive traces) to translate die-level pinouts arranged at a fine pitch to panel-level pinouts arranged at a coarser pitch. Local interconnects and local interconnect components provide for electrical communication between integrated circuit dies in a panel. Coreless panel architectures can comprise a glass reinforcement layer to provide additional mechanical stiffness. The glass reinforcement layer can have interconnect structures and a local interconnect component. Panel embodiments with a glass core or glass reinforcement layer can comprise waveguides and channel a liquid coolant therethrough, and can further comprise photonic integrated circuits. Panel-level manufacturing techniques can enable panels having dimensions larger (e.g.
    Type: Application
    Filed: July 22, 2022
    Publication date: January 25, 2024
    Applicant: Intel Corporation
    Inventors: Gang Duan, Hamid R. Azimi, Rahul Manepalli, Srinivas V. Pietambaram
  • Publication number: 20240021523
    Abstract: Embodiments disclosed herein include electronic packages and methods of forming such packages. In an embodiment, a microelectronic device package may include a redistribution layer (RDL) and an interposer over the RDL. In an embodiment, a glass core may be formed over the RDL and surround the interposer. In an embodiment, the microelectronic device package may further comprise a plurality of dies over the interposer. In an embodiment, the plurality of dies are communicatively coupled with the interposer.
    Type: Application
    Filed: September 28, 2023
    Publication date: January 18, 2024
    Inventors: Srinivas PIETAMBARAM, Rahul MANEPALLI, Gang DUAN
  • Publication number: 20240006380
    Abstract: High-density IC die package routing structures with one or more nitrided surfaces. Metallization features may be formed, for example with a plating process. Following the plating process, a surface of the metallization features may be exposed to a surface treatment that incorporates nitrogen onto a surface of the metallization. The presence of nitrogen may chemically improve adhesion between finely patterned metallization features and package dielectric material. Accordingly, surface roughness of metallization features may be reduced without suffering delamination. With lower surface roughness, metallization features may transmit higher frequency data signals with lower insertion loss.
    Type: Application
    Filed: July 1, 2022
    Publication date: January 4, 2024
    Applicant: Intel Corporation
    Inventors: Suddhasattwa Nad, Srinivas Pietambaram, Rahul Manepalli, Marcel Wall, Darko Grujicic
  • Publication number: 20230361044
    Abstract: Embodiments disclosed herein include electronic packages and methods of forming such packages. In an embodiment, a microelectronic device package may include a redistribution layer (RDL) and an interposer over the RDL. In an embodiment, a glass core may be formed over the RDL and surround the interposer. In an embodiment, the microelectronic device package may further comprise a plurality of dies over the interposer. In an embodiment, the plurality of dies are communicatively coupled with the interposer.
    Type: Application
    Filed: July 21, 2023
    Publication date: November 9, 2023
    Inventors: Srinivas PIETAMBARAM, Rahul MANEPALLI, Gang DUAN
  • Publication number: 20230317592
    Abstract: In one embodiment, a package substrate includes a substrate core, buildup layers, and one or more conductive traces. The substrate core includes at least one dielectric layer with hollow glass fibers. The buildup layers include dielectric layers below and above the substrate core.
    Type: Application
    Filed: April 1, 2022
    Publication date: October 5, 2023
    Applicant: Intel Corporation
    Inventors: Brandon Christian Marin, Hamid R. Azimi, Sri Chaitra Jyotsna Chavali, Tarek A. Ibrahim, Wei-Lun K Jen, Rahul Manepalli, Kevin T. McCarthy
  • Patent number: 11769735
    Abstract: Embodiments disclosed herein include electronic packages and methods of forming such electronic packages. In an embodiment, the electronic package comprises a mold layer having a first surface and a second surface opposite the first surface, and a plurality of first dies embedded in the mold layer. In an embodiment, each of the plurality of first dies has a surface that is substantially coplanar with the first surface of the mold layer. In an embodiment, the electronic package further comprises a second die embedded in the mold layer. In an embodiment, the second die is positioned between the plurality of first dies and the second surface of the mold layer.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: September 26, 2023
    Assignee: Intel Corporation
    Inventors: Srinivas Pietambaram, Gang Duan, Deepak Kulkarni, Rahul Manepalli, Xiaoying Guo
  • Patent number: 11756890
    Abstract: Embodiments disclosed herein include electronic packages and methods of forming such packages. In an embodiment, a microelectronic device package may include a redistribution layer (RDL) and an interposer over the RDL. In an embodiment, a glass core may be formed over the RDL and surround the interposer. In an embodiment, the microelectronic device package may further comprise a plurality of dies over the interposer. In an embodiment, the plurality of dies are communicatively coupled with the interposer.
    Type: Grant
    Filed: April 28, 2022
    Date of Patent: September 12, 2023
    Assignee: Intel Corporation
    Inventors: Srinivas Pietambaram, Rahul Manepalli, Gang Duan
  • Patent number: 11694898
    Abstract: Embodiments disclosed herein include electronic packages and methods of forming such packages. In an embodiment, an electronic package comprises a package substrate, a first die over the package substrate, the first die having a first bump pitch, a second die over the package substrate, the second die having a second bump pitch that is greater than the first bump pitch, and a plurality of conductive traces over the package substrate, the plurality of conductive traces electrically coupling the first die to the second die. In an embodiment, a first end region of the plurality of conductive traces proximate to the first die has a first line space (L/S) dimension, and a second end region of the plurality of conductive traces proximate to the second die has a second L/S dimension. In an embodiment, the second L/S dimension is greater than the first L/S dimension.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: July 4, 2023
    Assignee: Intel Corporation
    Inventors: Suddhasattwa Nad, Jeremy Ecton, Bai Nie, Rahul Manepalli, Marcel Wall
  • Patent number: 11658055
    Abstract: Embodiments disclosed herein include electronic packages and methods of forming such packages. In an embodiment, the electronic package comprises a package substrate having a first surface and a second surface opposite from the first surface, and a monolayer having a plurality of first molecules over the first surface of the package substrate. In an embodiment, the first molecules each comprise a first functional group attached to the first surface, and a first release moiety attached to the first functional group.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: May 23, 2023
    Inventors: Suddhasattwa Nad, Rahul Manepalli
  • Patent number: 11646274
    Abstract: An integrated circuit package may be formed comprising a substrate that includes a mold material layer and a signal routing layer, wherein the mold material layer comprises at least one bridge and at least one foam structure embedded in a mold material. In one embodiment, the substrate may include the mold material of the mold material layer filling at least a portion of cells within the foam structure. In a further embodiment, at least two integrated circuit devices may be attached to the substrate, such that the bridge provides device-to-device interconnection between the at least two integrated circuit devices. In a further embodiment, the integrated circuit package may be electrically attached to an electronic board.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: May 9, 2023
    Assignee: Intel Corporation
    Inventors: Mufei Yu, Gang Duan, Edvin Cetegen, Baris Bicen, Rahul Manepalli
  • Publication number: 20230095281
    Abstract: Methods and apparatus to reduce defects in interconnects between semiconductor dies and package substrates are disclosed. An apparatus includes a substrate and a semiconductor die mounted to the substrate. The apparatus further includes bumps to electrically couple the die to the substrate. Ones of the bumps have corresponding bases. The bases have a shape that is non-circular.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Kyle McElhinny, Hongxia Feng, Xiaoying Guo, Steve Cho, Jung Kyu Han, Changhua Liu, Leonel Arana, Rahul Manepalli, Dingying Xu, Amram Eitan
  • Publication number: 20220375866
    Abstract: An electronic substrate may be fabricated to include a fine pitch dielectric layer having an upper surface, a coarse pitch dielectric layer on the upper surface of the fine pitch dielectric layer, and at least one hybrid conductive via extending through the fine pitch dielectric layer and the coarse pitch dielectric layer. The hybrid conductive via is fabricated such that a portion thereof that extends through the fine pitch dielectric layer is smaller than a portion extending through the coarse pitch dielectric layer, which results in a stepped configuration, wherein a portion of the hybrid conductive via abuts the upper surface of the fine pitch dielectric layer. In an embodiment of the present description, an integrated circuit package may be formed with the electronic substrate, wherein at least two integrated circuit devices may be attached to the electronic substrate, such that the bridge provides device-to-device interconnection therebetween.
    Type: Application
    Filed: May 21, 2021
    Publication date: November 24, 2022
    Applicant: Intel Corporation
    Inventors: Srinivas Pietambaram, Rahul Manepalli
  • Patent number: 11501967
    Abstract: Embodiments include package substrates and a method of forming the package substrates. A package substrate includes a self-assembled monolayer (SAM) layer over a first dielectric, where the SAM layer includes first end groups and second end groups. The second end groups may include a plurality of hydrophobic moieties. The package substrate also includes a conductive pad on the first dielectric, where the conductive pad has a bottom surface, a top surface, and a sidewall, and where the SAM layer surrounds and contacts a surface of the sidewall of the conductive pad. The hydrophobic moieties may include fluorinated moieties. The conductive pad includes a copper material, where the top surface of the conductive pad has a surface roughness that is approximately equal to a surface roughness of the as-plated copper material. The SAM layer may have a thickness that is approximately 0.1 nm to 20 nm.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: November 15, 2022
    Assignee: Intel Corporation
    Inventors: Suddhasattwa Nad, Roy Dittler, Darko Grujicic, Marcel Wall, Rahul Manepalli
  • Publication number: 20220293509
    Abstract: An electronic substrate may be formed having at least one metal-to-dielectric adhesion promotion material layer therein. The electronic substrate may comprise a conductive metal trace, a dielectric material layer on the conductive metal trace, and the adhesion promotion material layer between the conductive metal trace and the dielectric material layer, wherein the adhesion promotion material layer comprises an organic adhesion material and a metal constituent dispersed within the organic adhesion material, wherein a metal within the metal constituent has a standard reduction potential greater than a standard reduction potential of the conductive metal trace.
    Type: Application
    Filed: March 10, 2021
    Publication date: September 15, 2022
    Applicant: Intel Corporation
    Inventors: Rahul Manepalli, Suddhasattwa Nad, Marcel Wall, Darko Grujicic
  • Patent number: 11445616
    Abstract: Embodiments described herein are directed to interfacial layers and techniques of forming such interfacial layers. An interfacial layer having one or more light absorbing molecules is on a metal layer. The light absorbing molecule(s) may comprise a moiety exhibiting light absorbing properties. The interfacial layer can assist with improving adhesion of a resist layer to the metal layer and with improving use of one or more lithography techniques to fabricate interconnects and/or features using the resist and metal layers for a package substrate, a semiconductor package, or a PCB. For one embodiment, the interfacial layer includes, but is not limited to, an organic interfacial layer. Examples of organic interfacial layers include, but are not limited to, self-assembled monolayers (SAMs), constructs and/or variations of SAMs, organic adhesion promotor moieties, and non-adhesion promoter moieties.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: September 13, 2022
    Assignee: Intel Corporation
    Inventors: Suddhasattwa Nad, Rahul Manepalli, Marcel Wall