Patents by Inventor RAHUL RAMASWAMY

RAHUL RAMASWAMY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250120143
    Abstract: Described herein are gate-all-around (GAA) transistors with extended drains, where the drain region extends through a well region below the GAA transistor. A high voltage can be applied to the drain, and the extended drain region provides a voltage drop. The transistor length (and, specifically length of the extended drain) can be varied based on the input voltage to the device, e.g., providing a longer drain for higher input voltages. The extended drain transistors can be implemented in devices that include CFETs, either by implementing the extended drain transistor across both CFET layers, or by providing a sub-fin pedestal with the well regions in the lower layer.
    Type: Application
    Filed: October 6, 2023
    Publication date: April 10, 2025
    Applicant: Intel Corporation
    Inventors: Sanjay Rangan, Adam Brand, Chen-Guan Lee, Rahul Ramaswamy, Hsu-Yu Chang, Adithya Shankar, Marko Radosavljevic
  • Publication number: 20250113561
    Abstract: In stacked transistor device, such as a complementary field-effect-transistor (CFET) device, different strain materials may be used in different layers, e.g., a tensile material is deposited in a first isolation region in the PMOS layer, and a compressive material is deposited in second isolation region in the NMOS layer. The strain materials may be stacked, such that the second isolation region may be positioned over the first isolation region. In some cases, in one or both of the isolation regions, a liner material is included between the strain material and the source and drain regions. Certain embodiments provide independent tuning of strain forces in a stacked transistor device. Different materials are selected for different layers in the stacked device to provide favorable performance enhancement or tuning (e.g., adjustment of the threshold voltage) in NMOS and PMOS layers.
    Type: Application
    Filed: September 28, 2023
    Publication date: April 3, 2025
    Applicant: Intel Corporation
    Inventors: Rahul Ramaswamy, Marko Radosavljevic, Hsu-Yu Chang, Scott M. Mokler, Stephanie Chin, Walid M. Hafez
  • Publication number: 20250089312
    Abstract: Gate-all-around integrated circuit structures having differential nanowire thickness and gate oxide thickness, and methods of fabricating gate-all-around integrated circuit structures having differential nanowire thickness and gate oxide thickness, are described. For example, an integrated circuit structure includes a nanowire with an outer thickness and an inner thickness, the inner thickness less than the outer thickness. The nanowire tapers from outer regions having the outer thickness to an inner region having the inner thickness. A dielectric material is on and surrounding the nanowire such that a combined thickness of the nanowire and the dielectric material in the inner region is approximately the same as the outer thickness of the nanowire.
    Type: Application
    Filed: September 8, 2023
    Publication date: March 13, 2025
    Inventors: Rahul RAMASWAMY, Marko RADOSAVLJEVIC, Walid M. HAFEZ, Hsu-Yu CHANG, Jeong Dong KIM, Scott MOKLER
  • Patent number: 12249622
    Abstract: Embodiments disclosed herein include nanowire and nanoribbon devices with non-uniform dielectric thicknesses. In an embodiment, the semiconductor device comprises a substrate and a plurality of first semiconductor layers in a vertical stack over the substrate. The first semiconductor layers may have a first spacing. In an embodiment, a first dielectric surrounds each of the first semiconductor layers, and the first dielectric has a first thickness. The semiconductor device may further comprise a plurality of second semiconductor layers in a vertical stack over the substrate, where the second semiconductor layers have a second spacing that is greater than the first spacing. In an embodiment a second dielectric surrounds each of the second semiconductor layers, and the second dielectric has a second thickness that is greater than the first thickness.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: March 11, 2025
    Assignee: Intel Corporation
    Inventors: Tanuj Trivedi, Rahul Ramaswamy, Jeong Dong Kim, Ting Chang, Walid M. Hafez, Babak Fallahazad, Hsu-Yu Chang, Nidhi Nidhi
  • Patent number: 12148757
    Abstract: Disclosed herein are IC structures, packages, and devices that include Si-based semiconductor material stack monolithically integrated on the same support structure as non-Si transistors or other non-Si-based devices. In some aspects, the Si-based semiconductor material stack may be provided by semiconductor regrowth over an insulator material. Providing a Si-based semiconductor material stack monolithically integrated on the same support structure as non-Si based devices may provide a viable approach to integrating Si-based transistors with non-Si technologies because the Si-based semiconductor material stack may serve as a foundation for forming Si-based transistors.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: November 19, 2024
    Assignee: Intel Corporation
    Inventors: Nidhi Nidhi, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta, Paul B. Fischer, Rahul Ramaswamy, Walid M. Hafez, Johann Christian Rode
  • Patent number: 12108595
    Abstract: A device structure includes a first gate on a first fin, a second gate on a second fin, where the second gate is spaced apart from the first gate by a distance. A fuse spans the distance and is in contact with the first gate and the second gate. A first dielectric is between the first fin and the second fin, where the first dielectric is in contact with, and below, the fuse and a second dielectric is between the first gate and the second gate, where the second dielectric is on the fuse.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: October 1, 2024
    Assignee: Intel Corporation
    Inventors: Sumit Ashtekar, Rahul Ramaswamy, Walid Hafez, Hector M. Saavedra Garcia
  • Patent number: 12089411
    Abstract: Embodiments disclosed herein include a semiconductor device and methods of forming such a device. In an embodiment, the semiconductor device comprises a substrate and a transistor on the substrate. In an embodiment, the transistor comprises a first gate electrode, where the first gate electrode is part of a first array of gate electrodes with a first pitch. In an embodiment, the first gate electrode has a first average grain size. In an embodiment, the semiconductor device further comprises a component cell on the substrate. In an embodiment, the component cell comprises a second gate electrode, where the second gate electrode is part of a second array of gate electrodes with a second pitch that is larger than the first pitch. In an embodiment, the second gate electrode has a second average grain size that is larger than the first average grain size.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: September 10, 2024
    Assignee: Intel Corporation
    Inventors: Tanuj Trivedi, Walid M. Hafez, Rohan Bambery, Daniel B. O'Brien, Christopher Alan Nolph, Rahul Ramaswamy, Ting Chang
  • Patent number: 12040395
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment a semiconductor device comprises a substrate, a source region over the substrate, a drain region over the substrate, and a semiconductor body extending from the source region to the drain region. In an embodiment, the semiconductor body has a first region with a first conductivity type and a second region with a second conductivity type. In an embodiment, the semiconductor device further comprises a gate structure over the first region of the semiconductor body, where the gate structure is closer to the source region than the drain region.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: July 16, 2024
    Assignee: Intel Corporation
    Inventors: Nidhi Nidhi, Rahul Ramaswamy, Walid M. Hafez, Hsu-Yu Chang, Ting Chang, Babak Fallahazad, Tanuj Trivedi, Jeong Dong Kim
  • Patent number: 12027613
    Abstract: Disclosed herein are IC structures, packages, and devices that include III-N transistor arrangements that may reduce nonlinearity of off-state capacitance of the III-N transistors. In various aspects, III-N transistor arrangements limit the extent of access regions of the transistors, compared to conventional implementations, which may limit the depletion of the access regions. Due to the limited extent of the depletion regions of a transistor, the off-state capacitance may exhibit less variability in values across different gate-source voltages and, hence, exhibit a more linear behavior during operation.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: July 2, 2024
    Assignee: Intel Corporation
    Inventors: Nidhi Nidhi, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta, Paul B. Fischer, Rahul Ramaswamy, Walid M. Hafez, Johann Christian Rode
  • Patent number: 11996403
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment, a semiconductor device comprises a semiconductor substrate and a source. The source has a first conductivity type and a first insulator separates the source from the semiconductor substrate. The semiconductor device further comprises a drain. The drain has a second conductivity type that is opposite from the first conductivity type, and a second insulator separates the drain from the semiconductor substrate. In an embodiment, the semiconductor further comprises a semiconductor body between the source and the drain, where the semiconductor body is spaced away from the semiconductor substrate.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: May 28, 2024
    Assignee: Intel Corporation
    Inventors: Nidhi Nidhi, Rahul Ramaswamy, Walid M. Hafez, Hsu-Yu Chang, Ting Chang, Babak Fallahazad, Tanuj Trivedi, Jeong Dong Kim, Ayan Kar, Benjamin Orr
  • Publication number: 20240088253
    Abstract: Gate-all-around integrated circuit structures having dual nanowire/nanoribbon channel structures, and methods of fabricating gate-all-around integrated circuit structures having dual nanowire/nanoribbon channel structures, are described. For example, an integrated circuit structure includes a first vertical arrangement of nanowires above a substrate. A dielectric cap is over the first vertical arrangement of nanowires. A second vertical arrangement of nanowires is above the substrate. Individual ones of the second vertical arrangement of nanowires are laterally staggered with individual ones of the first vertical arrangement of nanowires and the dielectric cap.
    Type: Application
    Filed: November 15, 2023
    Publication date: March 14, 2024
    Inventors: Tanuj TRIVEDI, Rahul RAMASWAMY, Jeong Dong KIM, Babak FALLAHAZAD, Hsu-Yu CHANG, Ting CHANG, Nidhi NIDHI, Walid M. HAFEZ
  • Patent number: 11881511
    Abstract: A transistor is disclosed. The transistor includes a substrate, a superlattice structure that includes a plurality of heterojunction channels, and a gate that extends to one of the plurality of heterojunction channels. The transistor also includes a source adjacent a first side of the superlattice structure and a drain adjacent a second side of the superlattice structure.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: January 23, 2024
    Assignee: Intel Corporation
    Inventors: Nidhi Nidhi, Rahul Ramaswamy, Sansaptak Dasgupta, Han Wui Then, Marko Radosavljevic, Johann C. Rode, Paul B. Fischer, Walid M. Hafez
  • Patent number: 11862703
    Abstract: Gate-all-around integrated circuit structures having dual nanowire/nanoribbon channel structures, and methods of fabricating gate-all-around integrated circuit structures having dual nanowire/nanoribbon channel structures, are described. For example, an integrated circuit structure includes a first vertical arrangement of nanowires above a substrate. A dielectric cap is over the first vertical arrangement of nanowires. A second vertical arrangement of nanowires is above the substrate. Individual ones of the second vertical arrangement of nanowires are laterally staggered with individual ones of the first vertical arrangement of nanowires and the dielectric cap.
    Type: Grant
    Filed: July 21, 2022
    Date of Patent: January 2, 2024
    Assignee: Intel Corporation
    Inventors: Tanuj Trivedi, Rahul Ramaswamy, Jeong Dong Kim, Babak Fallahazad, Hsu-Yu Chang, Ting Chang, Nidhi Nidhi, Walid M. Hafez
  • Publication number: 20230420501
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment, a semiconductor device comprises a substrate, and a first transistor of a first conductivity type over the substrate. In an embodiment, the first transistor comprises a first semiconductor channel, and a first gate electrode around the first semiconductor channel. In an embodiment, the semiconductor device further comprises a second transistor of a second conductivity type above the first transistor. The second transistor comprises a second semiconductor channel, and a second gate electrode around the second semiconductor channel. In an embodiment, the second gate electrode and the first gate electrode comprise different materials.
    Type: Application
    Filed: September 11, 2023
    Publication date: December 28, 2023
    Inventors: Rahul RAMASWAMY, Walid M. HAFEZ, Tanuj TRIVEDI, Jeong Dong KIM, Ting CHANG, Babak FALLAHAZAD, Hsu-Yu CHANG, Nidhi NIDHI
  • Patent number: 11848362
    Abstract: Disclosed herein are IC structures, packages, and devices that include transistors, e.g., III-N transistors, having a source region, a drain region (together referred to as “source/drain” (S/D) regions), and a gate stack. In one aspect, a contact to at least one of the S/D regions of a transistor may have a width that is smaller than a width of the S/D region. In another aspect, a contact to a gate electrode material of the gate stack of a transistor may have a width that is smaller than a width of the gate electrode material. Reducing the width of contacts to S/D regions or gate electrode materials of a transistor may reduce the overlap area between various pairs of these contacts, which may, in turn, allow reducing the off-state capacitance of the transistor. Reducing the off-state capacitance of III-N transistors may advantageously allow increasing their switching frequency.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: December 19, 2023
    Assignee: Intel Corporation
    Inventors: Rahul Ramaswamy, Nidhi Nidhi, Walid M. Hafez, Johann Christian Rode, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta
  • Patent number: 11791380
    Abstract: Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment, a semiconductor device comprises a substrate, and a first transistor of a first conductivity type over the substrate. In an embodiment, the first transistor comprises a first semiconductor channel, and a first gate electrode around the first semiconductor channel. In an embodiment, the semiconductor device further comprises a second transistor of a second conductivity type above the first transistor. The second transistor comprises a second semiconductor channel, and a second gate electrode around the second semiconductor channel. In an embodiment, the second gate electrode and the first gate electrode comprise different materials.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: October 17, 2023
    Assignee: Intel Corporation
    Inventors: Rahul Ramaswamy, Walid M. Hafez, Tanuj Trivedi, Jeong Dong Kim, Ting Chang, Babak Fallahazad, Hsu-Yu Chang, Nidhi Nidhi
  • Patent number: 11757027
    Abstract: Embodiments include a transistor and methods of forming such transistors. In an embodiment, the transistor comprises a semiconductor substrate, a barrier layer over the semiconductor substrate; a polarization layer over the barrier layer, an insulating layer over the polarization layer, a gate electrode through the insulating layer and the polarization layer, a spacer along sidewalls of the gate electrode, and a gate dielectric between the gate electrode and the barrier layer.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: September 12, 2023
    Assignee: Intel Corporation
    Inventors: Rahul Ramaswamy, Nidhi Nidhi, Walid M. Hafez, Johann C. Rode, Paul Fischer, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta
  • Patent number: 11715790
    Abstract: Disclosed herein are IC structures, packages, and devices that include III-N transistors implementing various means by which their threshold voltage it tuned. In some embodiments, a III-N transistor may include a doped semiconductor material or a fixed charge material included in a gate stack of the transistor. In other embodiments, a III-N transistor may include a doped semiconductor material or a fixed charge material included between a gate stack and a III-N channel stack of the transistor. Including doped semiconductor or fixed charge materials either in the gate stack or between the gate stack and the III-N channel stack of III-N transistors adds charges, which affects the amount of 2DEG and, therefore, affects the threshold voltages of these transistors.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: August 1, 2023
    Assignee: Intel Corporation
    Inventors: Nidhi Nidhi, Marko Radosavljevic, Sansaptak Dasgupta, Yang Cao, Han Wui Then, Johann Christian Rode, Rahul Ramaswamy, Walid M. Hafez, Paul B. Fischer
  • Patent number: 11688788
    Abstract: An integrated circuit includes a gate structure in contact with a portion of semiconductor material between a source region and a drain region. The gate structure includes gate dielectric and a gate electrode. The gate dielectric includes at least two hybrid stacks of dielectric material. Each hybrid stack includes a layer of low-? dielectric and a layer of high-? dielectric on the layer of low-? dielectric, where the layer of high-? dielectric has a thickness at least two times the thickness of the layer of low-? dielectric. In some cases, the layer of low-? dielectric has a thickness no greater than 1.5 nm. The layer of high-? dielectric may be a composite layer that includes two or more layers of compositionally-distinct materials. The gate structure can be used with any number of transistor configurations but is particularly useful with respect to group III-V transistors.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: June 27, 2023
    Assignee: Intel Corporation
    Inventors: Johann C. Rode, Samuel J. Beach, Nidhi Nidhi, Rahul Ramaswamy, Han Wui Then, Walid Hafez
  • Patent number: 11670709
    Abstract: Disclosed herein are IC structures, packages, and device assemblies with III-N transistors that include additional materials, referred to herein as “stressor materials,” which may be selectively provided over portions of polarization materials to locally increase or decrease the strain in the polarization material. Providing a compressive stressor material may decrease the tensile stress imposed by the polarization material on the underlying portion of the III-N semiconductor material, thereby decreasing the two-dimensional electron gas (2DEG) and increasing a threshold voltage of a transistor. On the other hand, providing a tensile stressor material may increase the tensile stress imposed by the polarization material, thereby increasing the 2DEG and decreasing the threshold voltage. Providing suitable stressor materials enables easier and more accurate control of threshold voltage compared to only relying on polarization material recess.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: June 6, 2023
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Marko Radosavljevic, Han Wui Then, Nidhi Nidhi, Rahul Ramaswamy, Paul B. Fischer, Walid M. Hafez, Johann Christian Rode