Patents by Inventor RAHUL RAMASWAMY

RAHUL RAMASWAMY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10756210
    Abstract: A transistor device including a transistor including a body disposed on a substrate, a gate stack contacting at least two adjacent sides of the body and a source and a drain on opposing sides of the gate stack and a channel defined in the body between the source and the drain, wherein a conductivity of the channel is similar to a conductivity of the source and the drain. An input/output (IO) circuit including a driver circuit coupled to the logic circuit, the driver circuit including at least one transistor device is described. A method including forming a channel of a transistor device on a substrate including an electrical conductivity; forming a source and a drain on opposite sides of the channel, wherein the source and the drain include the same electrical conductivity as the channel; and forming a gate stack on the channel.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: August 25, 2020
    Assignee: Intel Corporation
    Inventors: Chia-Hong Jan, Walid M. Hafez, Hsu-Yu Chang, Neville L. Dias, Rahul Ramaswamy, Roman W. Olac-Vaw, Chen-Guan Lee
  • Publication number: 20200266291
    Abstract: Disclosed herein are IC structures that implement field plates for III-N transistors in a form of electrically conductive structures provided in a III-N semiconductor material below the polarization layer (i.e., at the “backside” of an IC structure). In some embodiments, such a field plate may be implemented as a through-silicon via (TSV) extending from the back/bottom face of the substrate towards the III-N semiconductor material. Implementing field plates at the backside may provide a viable approach to changing the distribution of electric field at a transistor drain and increasing the breakdown voltage of an III-N transistor without incurring the large parasitic capacitances associated with the use of metal field plates provided above the polarization material. In addition, backside field plates may serve as a back barrier for advantageously reducing drain-induced barrier lowering.
    Type: Application
    Filed: February 14, 2019
    Publication date: August 20, 2020
    Applicant: Intel Corporation
    Inventors: Johann Christian Rode, Nidhi Nidhi, Rahul Ramaswamy, Han Wui Then, Walid M. Hafez
  • Publication number: 20200227407
    Abstract: Disclosed herein are IC structures, packages, and devices that include polysilicon resistors, monolithically integrated on the same substrate/die/chip as III-N transistors. An example IC structure includes an III-N semiconductor material provided over a support structure, a III-N transistor provided over a first portion of the III-N material, and a polysilicon resistor provided over a second portion of the III-N material. Because the III-N transistor and the polysilicon resistor are both provided over a single support structure, they may be referred to as “integrated” transistors. Because the III-N transistor and the polysilicon resistor are provided over different portions of the III-N semiconductor material, and, therefore, over different portion of the support structure, their integration may be referred to as “side-by-side” integration.
    Type: Application
    Filed: January 16, 2019
    Publication date: July 16, 2020
    Applicant: Intel Corporation
    Inventors: Marko Radosavljevic, Han Wui Then, Sansaptak Dasgupta, Paul B. Fischer, Nidhi Nidhi, Rahul Ramaswamy, Johann Christian Rode, Walid M. Hafez
  • Publication number: 20200219772
    Abstract: An integrated circuit structure and methodologies of forming same. In an embodiment, the integrated circuit structure includes a transistor gate structure in a first region of semiconductor material and a diode in a second region of the semiconductor material. The gate structure has a gate electrode of conductive material with a liner along sides and a bottom of the gate electrode. The gate electrode has a gate length less than a threshold dimension value. The diode includes a body of the conductive material in contact with the semiconductor material and includes the liner along sides of the body of conductive material. The body of conductive material has a lateral dimension greater than the threshold dimension value. The liner can include, for example, a gate dielectric and a diffusion barrier in some embodiments. In other embodiments, the liner is the gate dielectric (without any diffusion barrier).
    Type: Application
    Filed: January 3, 2019
    Publication date: July 9, 2020
    Applicant: INTEL CORPORATION
    Inventors: RAHUL RAMASWAMY, NIDHI NIDHI, WALID M. HAFEZ, JOHANN C. RODE, PAUL FISCHER, HAN WUI THEN, MARKO RADOSAVLJEVIC, SANSAPTAK DASGUPTA
  • Publication number: 20200219986
    Abstract: Disclosed herein are IC structures, packages, and devices assemblies that use ions or fixed charge to create field plate structures which are embedded in a dielectric material between gate and drain electrodes of a transistor, ion- or fixed charge-based field plate structures may provide viable approaches to changing the distribution of electric field at a transistor drain to increase the breakdown voltage of a transistor without incurring the large parasitic capacitances associated with the use of metal field plates. In one aspect, an IC structure includes a transistor, a dielectric material between gate and drain electrodes of the transistor, and an ion- or fixed charge-based region within the dielectric material, between the gate and the drain electrodes. Such an ion- or fixed charge-based region realizes an ion- or fixed charge-based field plate structure. Optionally, the IC structure may include multiple ion- or fixed charge-based field plate structures.
    Type: Application
    Filed: January 8, 2019
    Publication date: July 9, 2020
    Applicant: Intel Corporation
    Inventors: Han Wui Then, Marko Radosavljevic, Glenn A. Glass, Sansaptak Dasgupta, Nidhi Nidhi, Paul B. Fischer, Rahul Ramaswamy, Walid M. Hafez, Johann Christian Rode
  • Publication number: 20200203484
    Abstract: A transistor is disclosed. The transistor includes a substrate, a superlattice structure that includes a plurality of heterojunction channels, and a gate that extends to one of the plurality of heterojunction channels. The transistor also includes a source adjacent a first side of the superlattice structure and a drain adjacent a second side of the superlattice structure.
    Type: Application
    Filed: December 19, 2018
    Publication date: June 25, 2020
    Inventors: Nidhi NIDHI, Rahul RAMASWAMY, Sansaptak DASGUPTA, Han Wui THEN, Marko RADOSAVLJEVIC, Johann C. RODE, Paul B. FISCHER, Walid M. HAFEZ
  • Publication number: 20200194552
    Abstract: An integrated circuit structure comprises a base layer that includes a channel region, wherein the base layer and the channel region include group III-V semiconductor material. A polarization layer stack is over the base layer, wherein the polarization layer stack comprises a buffer stack, an interlayer over the buffer stack, a polarization layer over the interlayer. A cap layer stack is over the polarization layer to reduce transistor access resistance.
    Type: Application
    Filed: December 17, 2018
    Publication date: June 18, 2020
    Inventors: Sansaptak DASGUPTA, Marko RADOSAVLJEVIC, Han Wui THEN, Nidhi NIDHI, Rahul RAMASWAMY, Johann RODE, Paul FISCHER, Walid HAFEZ
  • Publication number: 20200194575
    Abstract: Embodiments include a transistor and methods of forming such transistors. In an embodiment, the transistor comprises a semiconductor substrate, a barrier layer over the semiconductor substrate; a polarization layer over the barrier layer, an insulating layer over the polarization layer, a gate electrode through the insulating layer and the polarization layer, a spacer along sidewalls of the gate electrode, and a gate dielectric between the gate electrode and the barrier layer.
    Type: Application
    Filed: December 13, 2018
    Publication date: June 18, 2020
    Inventors: Rahul RAMASWAMY, Nidhi NIDHI, Walid M. HAFEZ, Johann C. RODE, Paul FISCHER, Han Wui THEN, Marko RADOSAVLJEVIC, Sansaptak DASGUPTA
  • Publication number: 20200194578
    Abstract: Embodiments include a transistor and methods of forming a transistor. In an embodiment, the transistor comprises a semiconductor channel, a source electrode on a first side of the semiconductor channel, a drain electrode on a second side of the semiconductor channel, a polarization layer over the semiconductor channel, an insulator stack over the polarization layer, and a gate electrode over the semiconductor channel. In an embodiment, the gate electrode comprises a main body that passes through the insulator stack and the polarization layer, and a first field plate extending out laterally from the main body.
    Type: Application
    Filed: December 13, 2018
    Publication date: June 18, 2020
    Inventors: Rahul RAMASWAMY, Nidhi NIDHI, Walid M. HAFEZ, Johann C. RODE, Paul FISCHER, Han Wui THEN, Marko RADOSAVLJEVIC, Sansaptak DASGUPTA, Heli Chetanbhai VORA
  • Publication number: 20200176582
    Abstract: An integrated circuit includes a gate structure in contact with a portion of semiconductor material between a source region and a drain region. The gate structure includes gate dielectric and a gate electrode. The gate dielectric includes at least two hybrid stacks of dielectric material. Each hybrid stack includes a layer of low-? dielectric and a layer of high-? dielectric on the layer of low-? dielectric, where the layer of high-? dielectric has a thickness at least two times the thickness of the layer of low-? dielectric. In some cases, the layer of low-? dielectric has a thickness no greater than 1.5 nm. The layer of high-? dielectric may be a composite layer that includes two or more layers of compositionally-distinct materials. The gate structure can be used with any number of transistor configurations but is particularly useful with respect to group III-V transistors.
    Type: Application
    Filed: December 4, 2018
    Publication date: June 4, 2020
    Applicant: INTEL CORPORATION
    Inventors: Johann C. Rode, Samuel J. Beach, Nidhi Nidhi, Rahul Ramaswamy, Han Wui Then, Walid Hafez
  • Publication number: 20200105881
    Abstract: Group-III nitride (III-N) tunnel devices with a device structure including multiple quantum wells. A bias voltage applied across first device terminals may align the band structure to permit carrier tunneling between a first carrier gas residing in a first of the wells to a second carrier gas residing in a second of the wells. A III-N tunnel device may be operable as a diode, or further include a gate electrode. The III-N tunnel device may display a non-linear current-voltage response with negative differential resistance, and be employed as a frequency mixer operable in the GHz and THz bands. In some examples, a GHz-THz input RF signal and local oscillator signal are coupled into a gate electrode of a III-N tunnel device biased within a non-linear regime to generate an output RF signal indicative of a frequency difference between the RF signal and a local oscillator signal.
    Type: Application
    Filed: September 27, 2018
    Publication date: April 2, 2020
    Applicant: Intel Corporation
    Inventors: Rahul Ramaswamy, Walid M. Hafez, Marko Radosavljevic, Sansaptak Dasgupta, Han Wui Then, Nidhi Nidhi
  • Publication number: 20200066907
    Abstract: A transistor device including a transistor including a body disposed on a substrate, a gate stack contacting at least two adjacent sides of the body and a source and a drain on opposing sides of the gate stack and a channel defined in the body between the source and the drain, wherein a conductivity of the channel is similar to a conductivity of the source and the drain. An input/output (IO) circuit including a driver circuit coupled to the logic circuit, the driver circuit including at least one transistor device is described. A method including forming a channel of a transistor device on a substrate including an electrical conductivity; forming a source and a drain on opposite sides of the channel, wherein the source and the drain include the same electrical conductivity as the channel; and forming a gate stack on the channel.
    Type: Application
    Filed: September 30, 2016
    Publication date: February 27, 2020
    Inventors: Chia-Hong JAN, Walid M. HAFEZ, Hsu-Yu CHANG, Neville L. DIAS, Rahul RAMASWAMY, Roman W. OLAC-VAW, Chen-Guan LEE
  • Publication number: 20200043914
    Abstract: Techniques are disclosed for forming semiconductor structures including resistors between gates on self-aligned gate edge architecture. A semiconductor structure includes a first semiconductor fin extending in a first direction, and a second semiconductor fin adjacent to the first semiconductor fin, extending in the first direction. A first gate structure is disposed proximal to a first end of the first semiconductor fin and over the first semiconductor fin in a second direction, orthogonal to the first direction, and a second gate structure is disposed proximal to a second end of the first semiconductor fin and over the first semiconductor fin in the second direction. A first structure comprising isolation material is centered between the first and second semiconductor fins. A second structure comprising resistive material is disposed in the first structure, the second structure extending at least between the first gate structure and the second gate structure.
    Type: Application
    Filed: March 31, 2017
    Publication date: February 6, 2020
    Applicant: INTEL CORPORATION
    Inventors: ROMAN W. OLAC-VAW, WALID M. HAFEZ, CHIA-HONG JAN, HSU-YU CHANG, NEVILLE L. DIAS, RAHUL RAMASWAMY, NIDHI NIDHI, CHEN-GUAN LEE
  • Publication number: 20190356032
    Abstract: Embodiments of the invention include an electromagnetic waveguide and methods of forming the electromagnetic waveguide. In an embodiment the electromagnetic waveguide includes a first spacer and a second spacer. In an embodiment, the first and second spacer each have a reentrant profile. The electromagnetic waveguide may also include a conductive body formed between in the first and second spacer, and a void formed within the conductive body. In an additional embodiment, the electromagnetic waveguide may include a first spacer and a second spacer. Additionally, the electromagnetic waveguide may include a first portion of a conductive body formed along sidewalls of the first and second spacer and a second portion of the conductive body formed between an upper portion of the first portion of the conductive body. In an embodiment, the first portion of the conductive body and the second portion of the conductive body define a void through the electromagnetic waveguide.
    Type: Application
    Filed: December 30, 2016
    Publication date: November 21, 2019
    Inventors: Rahul RAMASWAMY, Chia-Hong JAN, Walid HAFEZ, Neville DIAS, Hsu-Yu CHANG, Roman OLAC-VAW, Chen-Guan LEE
  • Publication number: 20190348516
    Abstract: Disclosed herein are transistor arrangements with one or more FinFETs, where threshold voltage tuning of a given FinFET may be implemented by controlling the height of a work function (WF) material provided as a layer at least partially surrounding sidewalls of the upper-most portion of the fin of that FinFET. In some embodiments, such a control may be achieved as a part of forming a gate stack of a FinFET. In particular, a layer of a desired WF material may be deposited within an opening formed around a channel region of a fin as a part of forming the gate stack, and subsequently recessed to a desired height, where, for a given geometry and materials selection, the amount of WF material recess controls threshold voltage of the resulting FinFET. In this manner, different FinFETs in a single transistor arrangement may have different heights of their WF material layer.
    Type: Application
    Filed: May 8, 2018
    Publication date: November 14, 2019
    Applicant: Intel Corporation
    Inventors: Rahul Ramaswamy, Walid M. Hafez, Roman W. Olac-vaw
  • Publication number: 20190304840
    Abstract: An apparatus comprising at least one transistor in a first area of a substrate and at least one transistor in a second area, a work function material on a channel region of each of the at least one transistor, wherein an amount of work function material in the first area is different than an amount of work function material in the second area. A method comprising depositing a work function material and a masking material on at least one transistor body in a first area and at least one in a second area; removing less than an entire portion of the masking material so that the portion of the work function material that is exposed in the first area is different than that exposed in the second area; removing the exposed work function material; and forming a gate electrode on each of the at least one transistor bodies.
    Type: Application
    Filed: September 30, 2016
    Publication date: October 3, 2019
    Inventors: Chen-Guan LEE, Everett S. CASSIDY-COMFORT, Joodong PARK, Walid M. HAFEZ, Chia-Hong JAN, Rahul RAMASWAMY, Neville L. DIAS, Hsu-Yu CHANG
  • Publication number: 20190278022
    Abstract: Embodiments of the invention include an electromagnetic waveguide and methods of forming electromagnetic waveguides. In an embodiment, the electromagnetic waveguide may include a first semiconductor fin extending up from a substrate and a second semiconductor fin extending up from the substrate. The fins may be bent towards each other so that a centerline of the first semiconductor fin and a centerline of the second semiconductor fin extend from the substrate at a non-orthogonal angle. Accordingly, a cavity may be defined by the first semiconductor fin, the second semiconductor fin, and a top surface of the substrate. Embodiments of the invention may include a metallic layer and a cladding layer lining the surfaces of the cavity. Additional embodiments may include a core formed in the cavity.
    Type: Application
    Filed: December 30, 2016
    Publication date: September 12, 2019
    Inventors: Rahul RAMASWAMY, Chia-Hong JAN, Walid HAFEZ, Neville DIAS, Hsu-Yu CHANG, Roman W. OLAC-VAW, Chen-Guan LEE
  • Publication number: 20190245098
    Abstract: A transistor including a channel disposed between a source and a drain, a gate electrode disposed on the channel and surrounding the channel, wherein the source and the drain are formed in a body on a substrate and the channel is separated from the body. A method of forming an integrated circuit device including forming a trench in a dielectric layer on a substrate, the trench including dimensions for a transistor body including a width; forming a channel material in the trench; recessing the dielectric layer to expose a first portion of the channel material; increasing a width dimension of the exposed channel material; recessing the dielectric layer to expose a second portion of the channel material; removing the second portion of the channel material; and forming a gate stack on the first portion of the channel material, the gate stack including a gate dielectric and a gate electrode.
    Type: Application
    Filed: December 13, 2016
    Publication date: August 8, 2019
    Inventors: Rahul RAMASWAMY, Hsu-Yu CHANG, Chia-Hong JAN, Walid M. HAFEZ, Neville L. DIAS, Roman W. OLAC-VAW, Chen-Guan LEE
  • Publication number: 20190237564
    Abstract: A transistor including a source and a drain each formed in a substrate; a channel disposed in the substrate between the source and drain, wherein the channel includes opposing sidewalls with a distance between the opposing sidewalls defining a width dimension of the channel and wherein the opposing sidewalls extend a distance below a surface of the substrate; and a gate electrode on the channel. A method of forming a transistor including forming a source and a drain in an area of a substrate; forming a source contact on the source and a drain contact on the drain; after forming the source contact and the drain contact, forming a channel in the substrate in an area between the source and drain, the channel including a body having opposing sidewalls separated by a length dimension; and forming a gate contact on the channel.
    Type: Application
    Filed: December 12, 2016
    Publication date: August 1, 2019
    Inventors: Chia-Hong JAN, Walid M. HAFEZ, Neville L. DIAS, Rahul RAMASWAMY, Hsu-Yu CHANG, Roman W. OLAC-VAW, Chen-Guan LEE
  • Publication number: 20190206980
    Abstract: Fin-based thin film resistors, and methods of fabricating fin-based thin film resistors, are described. In an example, an integrated circuit structure includes a fin protruding through a trench isolation region above a substrate. The fin includes a semiconductor material and has a top surface, a first end, a second end, and a pair of sidewalls between the first end and the second end. An isolation layer is conformal with the top surface, the first end, the second end, and the pair of sidewalls of the fin. A resistor layer is conformal with the isolation layer conformal with the top surface, the first end, the second end, and the pair of sidewalls of the fin. A first anode cathode electrode is electrically connected to the resistor layer. A second anode or cathode electrode is electrically connected to the resistor layer.
    Type: Application
    Filed: October 21, 2016
    Publication date: July 4, 2019
    Inventors: Chia-Hong JAN, Walid M. HAFEZ, Neville L. DIAS, Rahul RAMASWAMY, Hsu-Yu CHANG, Roman W. OLAC-VAW, Chen-Guan LEE