Patents by Inventor Ralf Siemieniec

Ralf Siemieniec has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8088660
    Abstract: A method for producing an electrode in a semiconductor layer includes providing a substrate with a first surface and a second surface, forming a first trench having sidewalls and extending into the substrate from the first surface and forming a plug in the first trench. The method further includes reducing a thickness of the semiconductor substrate by removing semiconductor material beginning at the first surface so as to at least partially uncover sidewalls of the plug and forming a semiconductor layer on the semiconductor substrate, the semiconductor layer at least partially covering the uncovered sidewalls of the plug, and having an upper surface.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: January 3, 2012
    Assignee: Infineon Technologies Austria AG
    Inventors: Ralf Siemieniec, Martin Henning Vielemeyer, Oliver Blank
  • Patent number: 8080858
    Abstract: A Semiconductor component having a space saving edge structure is disclosed. One embodiment provides a first side, a second side, an inner region, an edge region adjoining the inner region in a lateral direction of the semiconductor body, and a first semiconductor layer extending across the inner region and the edge region and having a basic doping of a first conductivity type. At least one active component zone of a second conductivity type, which is complementary to the first conductivity type, is disposed in the inner region in the first semiconductor layer. An edge structure is disposed in the edge region and includes at least one trench extending from the first side into the semiconductor body. An edge electrode is disposed in the trench, a dielectric layer is disposed in the trench between the edge electrode and the semiconductor body, a first edge zone of the second conductivity type adjoin the trench and are at least partially disposed below the trench.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: December 20, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Franz Hirler, Ralf Siemieniec, Christian Geissler
  • Patent number: 8044459
    Abstract: In one embodiment, a field effect transistor has a semiconductor body, a drift region of a first conductivity type and a gate electrode. At least one trench extends into the drift region. A field plate is arranged at least in a portion of the at least one trench. A dielectric material at least partially surrounds both the gate electrode and the field plate. The field plate includes a first semiconducting material.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: October 25, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Franz Hirler, Walter Rieger, Andrew Wood, Mathias Born, Ralf Siemieniec, Jan Ropohl, Martin Poelzl, Oliver Blank, Uli Hiller, Oliver Haeberlen, Rudolf Zelsacher, Maximilian Roesch, Joachim Krumrey
  • Publication number: 20110227095
    Abstract: A semiconductor device is disclosed. One embodiment includes a first semiconductor die having a normally-off transistor. In a second semiconductor die a plurality of transistor cells of a normally-on transistor are formed, wherein one of a source terminal/drain terminal of the normally-on transistor is electrically coupled to a gate terminal of the normally-on transistor and the other one the source terminal/drain terminal of the normally-off transistor is electrically coupled to one of a source terminal/drain terminal of the normally-on transistor. The second semiconductor die includes a gate resistor electrically coupled between the gate terminal of the normally-off transistor and respective gates of the plurality of transistor cells. A voltage clamping element is electrically coupled between the gate terminal and the one of the source terminal/drain terminal of the normally-on transistor.
    Type: Application
    Filed: March 19, 2010
    Publication date: September 22, 2011
    Applicant: Infineon Technologies Austria AG
    Inventors: Michael Treu, Ralf Siemieniec
  • Publication number: 20110133272
    Abstract: A semiconductor device includes a source, a drain, and a gate configured to selectively enable a current to pass between the source and the drain. The semiconductor device includes a drift zone between the source and the drain and a first field plate adjacent the drift zone. The semiconductor device includes a dielectric layer electrically isolating the first field plate from the drift zone and charges within the dielectric layer close to an interface of the dielectric layer adjacent the drift zone.
    Type: Application
    Filed: December 9, 2009
    Publication date: June 9, 2011
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Anton Mauder, Rudolf Berger, Franz Hirler, Ralf Siemieniec, Hans-Joachim Schulze
  • Publication number: 20110076817
    Abstract: An integrated circuit device with a semiconductor body and a method for the production of a semiconductor device a provided. The semiconductor body comprises a cell field with a drift zone of a first conduction type. In addition, the semiconductor device comprises an edge region surrounding the cell field. Field plates with a trench gate structure are arranged in the cell field, and an edge trench surrounding the cell field is provided in the edge region. The front side of the semiconductor body is in the edge region provided with an edge zone of a conduction type complementing the first conduction type with doping materials of body zones of the cell field. The edge zone of the complementary conduction type extends both within and outside the edge trench.
    Type: Application
    Filed: December 7, 2010
    Publication date: March 31, 2011
    Applicant: Infineon Technologies Austria AG
    Inventors: Uli Hiller, Oliver Blank, Ralf Siemieniec, Maximilian Roesch
  • Patent number: 7880226
    Abstract: An integrated circuit device with a semiconductor body and a method for the production of a semiconductor device a provided. The semiconductor body comprises a cell field with a drift zone of a first conduction type. In addition, the semiconductor device comprises an edge region surrounding the cell field. Field plates with a trench gate structure are arranged in the cell field, and an edge trench surrounding the cell field is provided in the edge region. The front side of the semiconductor body is in the edge region provided with an edge zone of a conduction type complementing the first conduction type with doping materials of body zones of the cell field. The edge zone of the complementary conduction type extends both within and outside the edge trench.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: February 1, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Uli Hiller, Oliver Blank, Ralf Siemieniec, Maximilian Roesch
  • Patent number: 7859051
    Abstract: The application relates to a semiconductor device made of silicon with regionally reduced band gap and a process for the production of same. One embodiment provides a semiconductor device including a body zone, a drain zone and a source zone. A gate extends between the source zone and the drain zone. A reduced band gap region is provided in a region of the body zone, made of at least ternary compound semiconductor material.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: December 28, 2010
    Assignee: Infineon Technologies Austria AG
    Inventors: Ralf Siemieniec, Christian Foerster, Joachim Krumrey, Franz Hirler
  • Patent number: 7750397
    Abstract: A semiconductor component including compensation zones and discharge structures for the compensation zones. One embodiment provides a drift zone of a first conduction type, at least one compensation zone of a second conduction type, complementary to the first conduction type, the at least one compensation zone being arranged in the drift zone, at least one discharge structure which is arranged between the at least one compensation zone and a section of the drift zone that surrounds the compensation zone or in the compensation zone and designed to enable a charge carrier exchange between the compensation zone and the drift zone if a potential difference between an electrical potential of the compensation zone and an electrical potential of the section of the drift zone that surrounds the compensation zone is greater than a threshold value predetermined by the construction and/or the positioning of the discharge structure.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: July 6, 2010
    Assignee: Infineon Technologies Austria AG
    Inventors: Franz Hirler, Ralf Siemieniec, Ilja Pawel
  • Publication number: 20100167509
    Abstract: A method for producing a buried n-doped semiconductor zone in a semiconductor body. In one embodiment, the method includes producing an oxygen concentration at least in the region to be doped in the semiconductor body. The semiconductor body is irradiated via one side with nondoping particles for producing defects in the region to be doped. A thermal process is carried out. The invention additionally relates to a semiconductor component with a field stop zone.
    Type: Application
    Filed: March 8, 2010
    Publication date: July 1, 2010
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Hans-Joachim Schulze, Josef Lutz, Franz-Josef Niedernostheide, Ralf Siemieniec
  • Publication number: 20100117144
    Abstract: In one embodiment, a field effect transistor has a semiconductor body, a drift region of a first conductivity type and a gate electrode. At least one trench extends into the drift region. A field plate is arranged at least in a portion of the at least one trench. A dielectric material at least partially surrounds both the gate electrode and the field plate. The field plate includes a first semiconducting material.
    Type: Application
    Filed: November 10, 2008
    Publication date: May 13, 2010
    Applicant: Infineon Technologies Austria AG
    Inventors: Franz Hirler, Walter Rieger, Andrew Wood, Mathias Born, Ralf Siemieniec, Jan Ropohl, Martin Poelzl, Oliver Blank, Uli Hiller, Oliver Haeberlen, Rudolf Zelsacher, Maximilian Roesch, Joachim Krumrey
  • Patent number: 7675108
    Abstract: A method for producing a buried n-doped semiconductor zone in a semiconductor body. In one embodiment, the method includes producing an oxygen concentration at least in the region to be doped in the semiconductor body. The semiconductor body is irradiated via one side with nondoping particles for producing defects in the region to be doped. A thermal process is carried out. The invention additionally relates to a semiconductor component with a field stop zone.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: March 9, 2010
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Josef Lutz, Franz-Josef Niedernostheide, Ralf Siemieniec
  • Publication number: 20100044720
    Abstract: The application relates to a semiconductor device made of silicon with regionally reduced band gap and a process for the production of same. One embodiment provides a semiconductor device including a body zone, a drain zone and a source zone. A gate extends between the source zone and the drain zone. A reduced band gap region is provided in a region of the body zone, made of at least ternary compound semiconductor material.
    Type: Application
    Filed: August 19, 2008
    Publication date: February 25, 2010
    Applicant: Infineon Technologies Austria AG
    Inventors: Ralf Siemieniec, Christian Foerster, Joachim Krumrey, Franz Hirler
  • Patent number: 7652325
    Abstract: The invention relates to a semiconductor component, which comprises a semiconductor body having a first and a second terminal zone of a first conduction type (n), a channel zone of a second conduction type (p), which is short circuited with the second terminal zone, a drift zone of the first conduction type (n) with weaker doping than the terminal zones, which drift zone is formed between the channel zone and the first terminal zone, the channel zone being formed between the drift zone and the second terminal zone, a control electrode, formed so that it is insulated from the channel zone, for controlling a conductive channel in the channel zone between the second terminal zone and the drift zone, and is distinguished in that a field stop zone of the first conduction type (n) is formed between the first terminal zone and the drift zone, the field stop zone having heavier doping than the drift zone and weaker doping than the first terminal zone, the maximum doping of the field stop zone being at most a factor o
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: January 26, 2010
    Assignee: Infineon Technologies Austria AG
    Inventors: Ralf Siemieniec, Hans-Joachim Schulze
  • Patent number: 7615847
    Abstract: A semiconductor component having a semiconductor body having first and second semiconductor regions of a first conduction type, and a third semiconductor region of a second conduction type, which is complementary to the first conduction type. The second semiconductor region is arranged between the first and third semiconductor region and together with the first semiconductor region forms a first junction region and together with the third semiconductor region forms a second junction region. In the second semiconductor region the dopant concentration is lower than the dopant concentration in the first semiconductor region. The dopant concentration in the second semiconductor region along a straight connecting line between the first and third semiconductor regions is inhomogeneous and has at least one minimum between the first and second junction regions, wherein the minimum is at a distance from the first and second junction regions.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: November 10, 2009
    Assignee: Infineon Technologies Austria AG
    Inventors: Markus Zundel, Franz Hirler, Ralf Siemieniec
  • Patent number: 7582531
    Abstract: A method for producing a region of increased doping in an n-doped semiconductor layer which is buried in a semiconductor body of a vertical power transistor and which is arranged between a p-doped body region facing the front side contact of the power transistor and an n-doped substrate facing the rear side contact of the power transistor has the following steps: a) irradiation of at least one part of the surface of the semiconductor body with protons, and b) heat treatment of the semiconductor body.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: September 1, 2009
    Assignee: Infineon Technologies Austria AG
    Inventors: Ralf Siemieniec, Hans-Joachim Schulze, Franz Hirler
  • Publication number: 20090152624
    Abstract: An integrated circuit device with a semiconductor body and a method for the production of a semiconductor device a provided. The semiconductor body comprises a cell field with a drift zone of a first conduction type. In addition, the semiconductor device comprises an edge region surrounding the cell field. Field plates with a trench gate structure are arranged in the cell field, and an edge trench surrounding the cell field is provided in the edge region. The front side of the semiconductor body is in the edge region provided with an edge zone of a conduction type complementing the first conduction type with doping materials of body zones of the cell field. The edge zone of the complementary conduction type extends both within and outside the edge trench.
    Type: Application
    Filed: January 25, 2008
    Publication date: June 18, 2009
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Uli Hiller, Oliver Blank, Ralf Siemieniec, Maximilian Roesch
  • Publication number: 20080258208
    Abstract: A semiconductor component including compensation zones and discharge structures for the compensation zones. One embodiment provides a drift zone of a first conduction type, at least one compensation zone of a second conduction type, complementary to the first conduction type, the at least one compensation zone being arranged in the drift zone, at least one discharge structure which is arranged between the at least one compensation zone and a section of the drift zone that surrounds the compensation zone or in the compensation zone and designed to enable a charge carrier exchange between the compensation zone and the drift zone if a potential difference between an electrical potential of the compensation zone and an electrical potential of the section of the drift zone that surrounds the compensation zone is greater than a threshold value predetermined by the construction and/or the positioning of the discharge structure.
    Type: Application
    Filed: April 18, 2008
    Publication date: October 23, 2008
    Applicant: Infineon Technologies Austria AG
    Inventors: Franz Hirler, Ralf Siemieniec, Ilja Pawel
  • Publication number: 20080230833
    Abstract: A semiconductor component having a semiconductor body having first and second semiconductor regions of a first conduction type, and a third semiconductor region of a second conduction type, which is complementary to the first conduction type. The second semiconductor region is arranged between the first and third semiconductor region and together with the first semiconductor region forms a first junction region and together with the third semiconductor region forms a second junction region. In the second semiconductor region the dopant concentration is lower than the dopant concentration in the first semiconductor region. The dopant concentration in the second semiconductor region along a straight connecting line between the first and third semiconductor regions is inhomogeneous and has at least one minimum between the first and second junction regions, wherein the minimum is at a distance from the first and second junction regions.
    Type: Application
    Filed: March 23, 2007
    Publication date: September 25, 2008
    Applicant: Infineon Technologies Austria AG
    Inventors: Markus Zundel, Franz Hirler, Ralf Siemieniec
  • Publication number: 20080042172
    Abstract: A Semiconductor component having a space saving edge structure is disclosed. One embodiment provides a first side, a second side, an inner region, an edge region adjoining the inner region in a lateral direction of the semiconductor body, and a first semiconductor layer extending across the inner region and the edge region and having a basic doping of a first conductivity type. At least one active component zone of a second conductivity type, which is complementary to the first conductivity type, is disposed in the inner region in the first semiconductor layer. An edge structure is disposed in the edge region and includes at least one trench extending from the first side into the semiconductor body. An edge electrode is disposed in the trench, a dielectric layer is disposed in the trench between the edge electrode and the semiconductor body, a first edge zone of the second conductivity type adjoin the trench and are at least partially disposed below the trench.
    Type: Application
    Filed: August 3, 2007
    Publication date: February 21, 2008
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Franz Hirler, Ralf Siemieniec, Christian Geissler