Patents by Inventor Ranbir Singh

Ranbir Singh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11004940
    Abstract: An embodiment relates to a n-type planar gate DMOSFET comprising a Silicon Carbide (SiC) substrate. The SiC substrate includes a N+ substrate, a N? drift layer, a P-well region and a first N+ source region within each P-well region. A second N+ source region is formed between the P-well region and a source metal via a silicide layer. During third quadrant operation of the DMOSFET, the second N+ source region starts depleting when a source terminal is positively biased with respect to a drain terminal. The second N+ source region impacts turn-on voltage of body diode regions of the DMOSFET by establishing short-circuitry between the P-well region and the source metal when the second N+ source region is completely depleted.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: May 11, 2021
    Assignee: GeneSiC Semiconductor Inc.
    Inventors: Siddarth Sundaresan, Ranbir Singh, Jaehoon Park
  • Publication number: 20210134998
    Abstract: An embodiment relates to a device comprising a unit cell on a SiC substrate, the unit cell comprising a gate insulator film, a trench in the well region, and a first sinker region of a second conduction type, wherein the first sinker region has a depth that is equal to or greater than a depth of a well region; wherein the device has an on-resistance of less than 3 milliohm-cm2, a gate threshold voltage of greater than 2.8V, a breakdown voltage of greater than 1450V, and an electric field of less than 3.5 megavolt/cm in the gate insulator film at a drain voltage of less than or equal to 1200 V.
    Type: Application
    Filed: January 14, 2020
    Publication date: May 6, 2021
    Inventors: Siddarth Sundaresan, Ranbir Singh, Jaehoon Park
  • Publication number: 20210134996
    Abstract: An embodiment relates to a device comprising a unit cell on a SiC substrate, the unit cell comprising a gate insulator film, a trench in the well region, and a first sinker region of a second conduction type, wherein the first sinker region has a depth that is equal to or greater than a depth of a well region; wherein the device has an on-resistance of less than 3 milliohm-cm2, a gate threshold voltage of greater than 2.8V, a breakdown voltage of greater than 1450V, and an electric field of less than 3.5 megavolt/cm in the gate insulator film at a drain voltage of less than or equal to 1200 V.
    Type: Application
    Filed: October 31, 2019
    Publication date: May 6, 2021
    Inventors: Siddarth Sundaresan, Ranbir Singh, Jaehoon Park
  • Publication number: 20210057519
    Abstract: An embodiment relates to a device comprising SiC, the device having a p-shield region that is outside a junction gate field-effect transistor region, wherein a doping concentration in a p-well region within a MOSFET channel is non-uniform. Another embodiment relates to a device comprising SiC, the device having a p-shield region, wherein a doping concentration in a p-well region within a MOSFET channel is non-uniform, wherein at least a portion of the p-shield region is located within the p-well region.
    Type: Application
    Filed: August 25, 2019
    Publication date: February 25, 2021
    Inventors: Siddarth SUNDARESAN, Ranbir SINGH, Jaehoon PARK
  • Patent number: 10916632
    Abstract: An embodiment relates to a device having a SiC substrate, a well region, a source region, and a first sinker region, wherein the first sinker region has a depth that is equal to or greater than a depth of the well region, the source region is within the well region, the first sinker region is within the source region, and the first sinker region is located between a source interconnect metallization region and the SiC substrate. Another embodiment relates to a device having a SiC substrate, a drift layer on the SiC substrate, a well region on the drift layer, a source region within the well region, and a plug within the well region.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: February 9, 2021
    Assignee: GENESIC SEMICONDUCTOR INC.
    Inventors: Siddarth Sundaresan, Ranbir Singh, Stoyan Jeliazkov
  • Publication number: 20200388695
    Abstract: An embodiment relates to a method comprising obtaining a SiC substrate comprising a N+ substrate and a N? drift layer; depositing a first hard mask layer on the SiC substrate and patterning the first hard mask layer; performing a p-type implant to form a p-well region; depositing a second hard mask layer on top of the first hard mask layer; performing an etch back of at least the second hard mask layer to form a sidewall spacer; implanting N type ions to form a N+ source region that is self-aligned; and forming a MOSFET.
    Type: Application
    Filed: June 4, 2019
    Publication date: December 10, 2020
    Inventors: Siddarth Sundaresan, Ranbir Singh, Jaehoon Park
  • Patent number: 10840385
    Abstract: An embodiment relates to a semiconductor component, comprising a semiconductor body of a first conduction type comprising a voltage blocking layer; and islands of a second conductivity type on a contact surface; and a metal layer on the voltage blocking layer, wherein the metal layer and the voltage blocking layer includes a Schottky contact, and a first conductivity type layer comprising the first conduction type not in contact with the Schottky contact that is interspersed between the islands of the second conductivity type.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: November 17, 2020
    Assignee: GeneSiC Semiconductor Inc.
    Inventors: Siddarth Sundaresan, Ranbir Singh, Jaehoon Park
  • Publication number: 20200295139
    Abstract: An embodiment relates to a device having a SiC substrate, a well region, a source region, and a first sinker region, wherein the first sinker region has a depth that is equal to or greater than a depth of the well region, the source region is within the well region, the first sinker region is within the source region, and the first sinker region is located between a source interconnect metallization region and the SiC substrate. Another embodiment relates to a device having a SiC substrate, a drift layer on the SiC substrate, a well region on the drift layer, a source region within the well region, and a plug within the well region.
    Type: Application
    Filed: March 13, 2019
    Publication date: September 17, 2020
    Inventors: Siddarth Sundaresan, Ranbir Singh, Stoyan Jeliazkov
  • Patent number: 10763356
    Abstract: An embodiment relates to a device comprising a unit cell on a SiC substrate, the unit cell comprising a first well region, a source region, a plug region, and a well trench, wherein the well trench has a depth that is less than that of the first well region. Additional embodiments relate to the device having a second well region, wherein the second well region has a depth that is equal to or deeper than the first well region and the second well region is located under and around the source region.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: September 1, 2020
    Assignee: GeneSiC Semiconductor Inc.
    Inventors: Siddarth Sundaresan, Ranbir Singh, Jaehoon Park, Stoyan Jeliazkov
  • Patent number: 10669057
    Abstract: The present invention is an apparatus and method for cutting individual label strips from a roll of label web utilizing a cutter assembly. A label cutter comprises a cutter assembly for continuously and independently controlling the rotational speeds of a rotating cutter shaft, a stationary shaft, and a label feed roller is provided. The length of the label strip is controlled by the distinct speed of rotation of a stationary knife, the stationary knife is rotatably coupled to the stationary shaft. At least one cutter blade is operatively associated to the rotating cutter shaft for cutting the label web. The stationary knife rotates with a speed of rotation different from the speed of rotation of the cutter blade to produce longer or shorter label length strips. The frequency at which the cutter blade meets the stationary knife is inversely related to the length of the label strip that is produced during cut off.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: June 2, 2020
    Assignee: Elum Inc.
    Inventors: Ranbir Singh Claire, Vinay Leeladhar Piratla, Karmen Claire
  • Publication number: 20190248531
    Abstract: The present invention is an apparatus and method for cutting individual label strips from a roll of label web utilizing a cutter assembly. A label cutter comprises a cutter assembly for continuously and independently controlling the rotational speeds of a rotating cutter shaft, a stationary shaft, and a label feed roller is provided. The length of the label strip is controlled by the distinct speed of rotation of a stationary knife, the stationary knife is rotatably coupled to the stationary shaft. At least one cutter blade is operatively associated to the rotating cutter shaft for cutting the label web. The stationary knife rotates with a speed of rotation different from the speed of rotation of the cutter blade to produce longer or shorter label length strips. The frequency at which the cutter blade meets the stationary knife is inversely related to the length of the label strip that is produced during cut off.
    Type: Application
    Filed: June 6, 2017
    Publication date: August 15, 2019
    Inventors: Ranbir Singh Claire, Vinay Leeladhar Piratla, Karmen Claire
  • Patent number: 10323307
    Abstract: A steel alloy and process for producing a hot formed component. The process includes providing a steel alloy sheet having a chemical composition (wt %) within a range of 0.3-0.85 C, 1.0-6.0 Mn, 1.0-4.0 Si+Al and the remainder being tramp elements and impurities. The steel alloy sheet is heated to within a temperature range between 700-900° C. for a time between 1-180 seconds and hot formed. Thereafter, the hot formed sheet is cooled to ambient temperature. Then, cooled hot formed sheet is tempered at a temperature between 200-600° C. for a time between 20-3000 seconds and cooled again to ambient temperature. The tempered and cooled sheet has a tensile strength between 1400-2400 MPa and at least 10% elongation to failure, and/or a product of tensile strength times percent elongation to failure of at least 16000 MPa·%.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: June 18, 2019
    Assignee: AM/NS Calvert LLC
    Inventors: Bertram Wilhelm Ehrhardt, Ranbir Singh Jamwal
  • Patent number: 9916282
    Abstract: Systems and methods are provided for analyzing unstructured time stamped data. A distribution of time-stamped data is analyzed to identify a plurality of potential time series data hierarchies for structuring the data. An analysis of a potential time series data hierarchy may be performed. The analysis of the potential time series data hierarchies may include determining an optimal time series frequency and a data sufficiency metric for each of the potential time series data hierarchies. One of the potential time series data hierarchies may be selected based on a comparison of the data sufficiency metrics. Multiple time series may be derived in a single-read pass according to the selected time series data hierarchy. A time series forecast corresponding to at least one of the derived time series may be generated.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: March 13, 2018
    Assignee: SAS INSTITUTE INC.
    Inventors: Michael James Leonard, Edward Tilden Blair, Jerzy Michal Brzezicki, Udo V. Sglavo, Ranbir Singh Tomar, Kannukuzhiyil Kurien Kurien, Sujatha Pothireddy, Rajib Nath, Vilochan Suresh Muley
  • Patent number: 9593399
    Abstract: A process for manufacturing a cold rolled high strength dual phase steel. The process includes soaking a steel slab within a temperature range of 1200-1300° C., hot rolling the soaked steel slab in a roughing treatment and producing a transfer bar, and hot rolling the transfer bar in a finishing treatment and producing hot rolled strip. The hot rolled strip is cold rolled with at least a 55% reduction in thickness. The cold rolled sheet is intercritically annealed at a temperature between 790-840° C. and rapidly cooled to a temperature between 450-500° C. The rapidly cooled sheet has a ferrite plus martensite microstructure, a 0.2% yield strength of at least 550 MPa, a tensile strength of at least 980 MPa and a total elongation to failure of at least 10%.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: March 14, 2017
    Assignee: Thyssenkrupp Steel USA, LLC
    Inventors: Ranbir Singh Jamwal, Joseph Frimpong, Bertram Wilhelm Ehrhardt, Harald Van Bracht, Roger Dale Boggs, Stanley Wayne Bevans
  • Patent number: 9493864
    Abstract: A process for producing high strength steel is provided. The process includes providing a steel slab having a chemical composition in weight percent within a range of 0.025-0.07 C, 1.20-1.70 Mn, 0.050-0.085 Nb, 0.022 max Ti, 0.065 max N, 0.0040 max S, 0.10-0.45 Si, 0.070 max P, with the balance being Fe and incidental impurities. The steel slab is soaked within a temperature range of 1150-1230° C., hot rolled using a roughing treatment in order to produce a transfer bar and further hot rolled using a finishing treatment in order to produce hot rolled strip. The hot rolled strip is cooled using a cooling rate between 10-100° C./second (sec) and coiled within a temperature range of 580-400° C. Finally, the coiled hot rolled strip has a yield strength of at least 80 ksi and a DWTT transition temperature equal or less than ?20° C.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: November 15, 2016
    Assignee: AM/NS Calvert LLC
    Inventors: Bertram Wilhelm Ehrhardt, Chris John Paul Samuel, Ranbir Singh Jamwal, Gerald McGloin, Stanley Wayne Bevans, Markus Wilhelm Forsch, Rudolf Schonenberg
  • Publication number: 20160017469
    Abstract: A steel alloy and process for producing a hot formed component. The process includes providing a steel alloy sheet having a chemical composition (wt %) within a range of 0.3-0.85 C, 1.0-6.0 Mn, 1.0-4.0 Si+Al and the remainder being tramp elements and impurities. The steel alloy sheet is heated to within a temperature range between 700-900° C. for a time between 1-180 seconds and hot formed. Thereafter, the hot formed sheet is cooled to ambient temperature. Then, cooled hot formed sheet is tempered at a temperature between 200-600° C. for a time between 20-3000 seconds and cooled again to ambient temperature. The tempered and cooled sheet has a tensile strength between 1400-2400 MPa and at least 10% elongation to failure, and/or a product of tensile strength times percent elongation to failure of at least 16000 MPa·%.
    Type: Application
    Filed: July 17, 2015
    Publication date: January 21, 2016
    Inventors: Bertram Wilhelm Ehrhardt, Ranbir Singh Jamwal
  • Patent number: 9186695
    Abstract: A machine and a method of applying a non-Newtonian liquid composition onto a surface in a controlled manner. The composition is held in a chamber at a controlled variable pressure and is dispensed through a slit die nozzle as controlled by a valve. Characteristics of the composition are empirically developed and provided to a logic control circuit to assure that the composition is dispensed on either the entire surface or in one or more precise locations.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: November 17, 2015
    Assignee: B&H Manufacturing Company, Inc.
    Inventors: Svatoboj Otruba, Ranbir Singh Claire
  • Publication number: 20150278153
    Abstract: Systems and methods are provided for analyzing unstructured time stamped data. A distribution of time-stamped data is analyzed to identify a plurality of potential time series data hierarchies for structuring the data. An analysis of a potential time series data hierarchy may be performed. The analysis of the potential time series data hierarchies may include determining an optimal time series frequency and a data sufficiency metric for each of the potential time series data hierarchies. One of the potential time series data hierarchies may be selected based on a comparison of the data sufficiency metrics. Multiple time series may be derived in a single-read pass according to the selected time series data hierarchy. A time series forecast corresponding to at least one of the derived time series may be generated.
    Type: Application
    Filed: June 10, 2015
    Publication date: October 1, 2015
    Inventors: Michael James Leonard, Edward Tilden Blair, Jerzy Michal Brzezicki, Udo V. Sglavo, Ranbir Singh Tomar, Kannukuzhiyil Kurien Kurien, Sujatha Pothireddy, Rajib Nath, Vilochan Suresh Muley
  • Publication number: 20150240324
    Abstract: A silicon alloyed steel for hot rolling and a process of hot rolling the silicon alloyed steel is provided. The process includes providing a steel slab having a chemical composition in weight percent within a range of 0.06-0.30 C, 0.3-2.0 Mn, 0.6-3.5 Si, and Fe plus incidental melting impurities. The steel slab is hot rolled and hot rolled steel strip is produced. The hot rolled steel strip is coiled at temperatures between 100-600° C. and has a microstructure containing at least 90 vol % ferrite plus pearlite, a yield strength of at least 400 megapascals (MPa), a tensile strength of at least 600 MPa, and a tensile elongation of at least 20%.
    Type: Application
    Filed: February 24, 2014
    Publication date: August 27, 2015
    Applicant: THYSSENKRUPP STEEL USA, LLC
    Inventors: Bertram Wilhelm Ehrhardt, Chris John Paul Samuel, Ranbir Singh Jamwal, Thomas Michael Poplawski, Timo Faath
  • Patent number: 9087306
    Abstract: Systems and methods are provided for analyzing unstructured time stamped data of a physical process in order to generate structured hierarchical data for a hierarchical time series analysis application. A plurality of time series analysis functions are selected from a functions repository. Distributions of time stamped unstructured data are analyzed to identify a plurality of potential hierarchical structures for the unstructured data with respect to the selected time series analysis functions.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: July 21, 2015
    Assignee: SAS Institute Inc.
    Inventors: Michael James Leonard, Edward Tilden Blair, Jerzy Michal Brzezicki, Udo V. Sglavo, Ranbir Singh Tomar, Kannukuzhiyil Kurien Kurien, Sujatha Pothireddy, Rajib Nath, Vilochan Suresh Muley