Patents by Inventor Randy L. Wolf

Randy L. Wolf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9324628
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer. The method additionally includes forming a plurality of nanowire structures on a surface of the electrically conductive layer.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: April 26, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, Max L. Lifson, James A. Slinkman, Theodore G. Van Kessel, Randy L. Wolf
  • Publication number: 20160104951
    Abstract: A fastener for a connector in an electrical coupling including a threaded bolt, a keeper member and a biasing member. The keeper member having a base and a distal member spaced apart from each other and a collapsible portion coupling the base and the distal member to each other in electrical communication. The second end of the threaded bolt extends to the base and is in electrical communication therewith. The distal member has a conductor contact surface. The biasing member includes an inner washer, an outer washer, and a Belleville washer positioned therebetween. The biasing member is insertable between the base and the distal member so that the inner washer is positioned between the base and the Belleville washer and the outer washer is positioned between the Belleville washer and the distal member. The collapsible portion provides an electrical shunt around the biasing member.
    Type: Application
    Filed: October 14, 2014
    Publication date: April 14, 2016
    Inventors: Carl Russel Tamm, Randy L. Wolf
  • Publication number: 20160104954
    Abstract: An electrical transmission line repair device including a first conductor clamp, a second conductor clamp and at least one tie rail extending between the first and second conductor clamps in a spaced apart orientation. The first conductor clamp including a lower assembly and an upper assembly. The lower assembly and the upper assembly are slidably engageable with each other so as to define a conductor cavity extending therealong. Clamping fasteners are configured to extend through openings in the upper assembly so as to be threadable toward and away from the conductor contact region of the lower assembly within the conductor cavity.
    Type: Application
    Filed: October 14, 2014
    Publication date: April 14, 2016
    Inventors: Randy L. Wolf, Carl Russel Tamm
  • Publication number: 20160072469
    Abstract: Switchable and/or tunable filters, methods of manufacture and design structures are disclosed herein. The method of forming the filters includes forming at least one piezoelectric filter structure comprising a plurality of electrodes formed on a piezoelectric substrate. The method further includes forming a micro-electro-mechanical structure (MEMS) comprising a MEMS beam formed above the piezoelectric substrate and at a location in which, upon actuation, the MEMS beam shorts the piezoelectric filter structure by contacting at least one of the plurality of electrodes.
    Type: Application
    Filed: November 13, 2015
    Publication date: March 10, 2016
    Inventors: James W. ADKISSON, Panglijen CANDRA, Thomas J. DUNBAR, Jeffrey P. GAMBINO, Mark D. JAFFE, Anthony K. STAMPER, Randy L. WOLF
  • Patent number: 9252733
    Abstract: Switchable and/or tunable filters, methods of manufacture and design structures are disclosed herein. The method of forming the filters includes forming at least one piezoelectric filter structure comprising a plurality of electrodes formed on a piezoelectric substrate. The method further includes forming a micro-electro-mechanical structure (MEMS) comprising a MEMS beam formed above the piezoelectric substrate and at a location in which, upon actuation, the MEMS beam shorts the piezoelectric filter structure by contacting at least one of the plurality of electrodes.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: February 2, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James W. Adkisson, Panglijen Candra, Thomas J. Dunbar, Jeffrey P. Gambino, Mark D. Jaffe, Anthony K. Stamper, Randy L. Wolf
  • Patent number: 9225311
    Abstract: Switchable and/or tunable filters, methods of manufacture and design structures are provided. The method of forming the filters includes forming at least one piezoelectric filter structure comprising a plurality of electrodes formed to be in contact with at least one piezoelectric substrate. The method further includes forming a micro-electro-mechanical structure (MEMS) comprising a MEMS beam in which, upon actuation, the MEMS beam will turn on the at least one piezoelectric filter structure by interleaving electrodes in contact with the piezoelectric substrate or sandwiching the at least one piezoelectric substrate between the electrodes.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: December 29, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James W. Adkisson, Panglijen Candra, Thomas J. Dunbar, Mark D. Jaffe, Anthony K. Stamper, Randy L. Wolf
  • Publication number: 20150372660
    Abstract: Switchable and/or tunable filters, methods of manufacture and design structures are disclosed herein. The method of forming the filters includes forming at least one piezoelectric filter structure comprising a plurality of electrodes formed to be in contact with at least one piezoelectric substrate. The method further includes forming a micro-electro-mechanical structure (MEMS) comprising a MEMS beam in which, upon actuation, the MEMS beam will turn on the at least one piezoelectric filter structure by interleaving electrodes in contact with the piezoelectric substrate or sandwiching the at least one piezoelectric substrate between the electrodes.
    Type: Application
    Filed: August 31, 2015
    Publication date: December 24, 2015
    Inventors: James W. ADKISSON, Panglijen CANDRA, Thomas J. DUNBAR, Mark D. JAFFE, Anthony K. STAMPER, Randy L. WOLF
  • Publication number: 20150318839
    Abstract: Switchable and/or tunable filters, methods of manufacture and design structures are disclosed herein. The method of forming the filters includes forming at least one piezoelectric filter structure comprising a plurality of electrodes formed on a piezoelectric substrate. The method further includes forming a fixed electrode with a plurality of fingers on the piezoelectric substrate. The method further includes forming a moveable electrode with a plurality of fingers over the piezoelectric substrate. The method further includes forming actuators aligned with one or more of the plurality of fingers of the moveable electrode.
    Type: Application
    Filed: June 30, 2015
    Publication date: November 5, 2015
    Inventors: James W. ADKISSON, Panglijen CANDRA, Thomas J. DUNBAR, Jeffrey P. GAMBINO, Mark D. JAFFE, Anthony K. STAMPER, Randy L. WOLF
  • Publication number: 20150255363
    Abstract: An approach for sinking heat from a transistor is provided. A method includes forming a substrate contact extending from a first portion of a silicon-on-insulator (SOI) island to a substrate. The method also includes forming a transistor in a second portion of the SOI island. The method further includes electrically isolating the substrate contact from the transistor by doping the first portion of the SOI island.
    Type: Application
    Filed: May 19, 2015
    Publication date: September 10, 2015
    Inventors: Alan B. Botula, Alvin J. Joseph, James A. Slinkman, Randy L. Wolf
  • Publication number: 20150243578
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 27, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. BOTULA, Max L. LIFSON, James A. SLINKMAN, Theodore G. VAN KESSEL, Randy L. WOLF
  • Publication number: 20150243879
    Abstract: A design structure for an integrated radio frequency (RF) filter on a backside of a semiconductor substrate includes: a device on a first side of a substrate; a radio frequency (RF) filter on a backside of the substrate; and at least one substrate conductor extending from the front side of the substrate to the backside of the substrate and electrically coupling the RF filter to the device.
    Type: Application
    Filed: May 14, 2015
    Publication date: August 27, 2015
    Inventors: James W. Adkisson, Panglijen Candra, Thomas J. Dunbar, Jeffrey P. Gambino, Mark D. Jaffe, Anthony K. Stamper, Randy L. Wolf
  • Publication number: 20150236040
    Abstract: Approaches for body contacted transistors are provided. A method of manufacturing a semiconductor structure includes forming a field effect transistor (FET) including a channel and a gate. The method also includes forming a diode that is electrically connected between the channel and the gate, wherein the diode and channel are contained in a same layer of material.
    Type: Application
    Filed: February 18, 2014
    Publication date: August 20, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. BOTULA, Randy L. WOLF
  • Patent number: 9099982
    Abstract: Switchable and/or tunable filters, methods of manufacture and design structures are provided herein. The method of forming the filters includes forming at least one piezoelectric filter structure comprising a plurality of electrodes formed on a piezoelectric substrate. The method further includes forming a fixed electrode with a plurality of fingers on the piezoelectric substrate. The method further includes forming a moveable electrode with a plurality of fingers over the piezoelectric substrate. The method further includes forming actuators aligned with one or more of the plurality of fingers of the moveable electrode.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: August 4, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James W. Adkisson, Panglijen Candra, Thomas J. Dunbar, Jeffrey P. Gambino, Mark D. Jaffe, Anthony K. Stamper, Randy L. Wolf
  • Patent number: 9070651
    Abstract: A non-linear kerf monitor, methods of manufacture and design structures are provided. The structure includes a coplanar waveguide provided in a kerf of a wafer between a first chip and a second chip. The structure further includes a shunt switch and a series switch coupled to the coplanar waveguide.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: June 30, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, Alvin J. Joseph, Randy L. Wolf
  • Patent number: 9059269
    Abstract: An approach for sinking heat from a transistor is provided. A method includes forming a substrate contact extending from a first portion of a silicon-on-insulator (SOI) island to a substrate. The method also includes forming a transistor in a second portion of the SOI island. The method further includes electrically isolating the substrate contact from the transistor by doping the first portion of the SOI island.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Alvin J. Joseph, James A. Slinkman, Randy L. Wolf
  • Patent number: 9058455
    Abstract: A design structure for an integrated radio frequency (RF) filter on a backside of a semiconductor substrate includes: a device on a first side of a substrate; a radio frequency (RF) filter on a backside of the substrate; and at least one substrate conductor extending from the front side of the substrate to the backside of the substrate and electrically coupling the RF filter to the device.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Panglijen Candra, Thomas J. Dunbar, Jeffrey P. Gambino, Mark D. Jaffe, Anthony K. Stamper, Randy L. Wolf
  • Patent number: 9054793
    Abstract: Disclosed are test structures for radio frequency (RF) power stress and characterization. Each test structure incorporates a single device and is selectively operated in either a stress mode, during which the device is stressed under RF power, or in an analysis mode, during which the impact of the applied stress on the performance of the device is characterized. During the stress mode, an input RF power signal is applied to the device through an RF signal input port and an output RF power signal is captured from the device at an RF signal output port. Depending upon the impedance value of the device at issue, the RF signal input port and the RF signal output port are connected to either the same terminal or opposing terminals and the need for impedance tuning is avoided. Also disclosed are test systems and methods for selectively controlling operation of such a test structure.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: June 9, 2015
    Assignee: International Business Machines Corporation
    Inventors: Donald J. Cook, Hanyi Ding, Xuefeng Liu, Randy L. Wolf
  • Patent number: 9048809
    Abstract: Switchable and/or tunable filters and methods of manufacture. The method of forming the filters includes forming at least one piezoelectric filter structure comprising a plurality of electrodes formed on a piezoelectric substrate. The method further includes forming a micro-electro-mechanical structure (MEMS) comprising a MEMS beam formed above the piezoelectric substrate and at a location in which, upon actuation, the MEMS beam shorts the piezoelectric filter structure by contacting at least one of the plurality of electrodes.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: June 2, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James W. Adkisson, Panglijen Candra, Thomas J. Dunbar, Jeffrey P. Gambino, Mark D. Jaffe, Anthony K. Stamper, Randy L. Wolf
  • Publication number: 20150091601
    Abstract: Embodiments of the present invention provide a circuit and method to characterize the impact of bias temperature instability on semiconductor devices. The circuit comprises a transistor having a gate, drain, source, and body terminal. Two AC pad sets each having a plurality of conductive pads. Two DC pads are in communication with a DC supply and/or meter. The gate terminal is in communication with a first conductive pad included in the plurality of conductive pads of each of the AC pad sets. The drain terminal is in communication with a second conductive pad of an AC pad set and the source terminal with a second conductive pad of another AC pad set. One DC pad is in communication with the gate terminal through a first serial resistor and another DC pad with the body terminal through a second serial resistor and provides an open-circuit for the gate and body terminals.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 2, 2015
    Applicant: International Business Machines Corporation
    Inventors: Hanyi Ding, Xuefeng Liu, Alvin W. Strong, Randy L. Wolf
  • Publication number: 20150042418
    Abstract: Switchable and/or tunable filters, methods of manufacture and design structures are disclosed herein. The method of forming the filters includes forming at least one piezoelectric filter structure comprising a plurality of electrodes formed on a piezoelectric substrate. The method further includes forming a micro-electro-mechanical structure (MEMS) comprising a MEMS beam formed above the piezoelectric substrate and at a location in which, upon actuation, the MEMS beam shorts the piezoelectric filter structure by contacting at least one of the plurality of electrodes.
    Type: Application
    Filed: October 24, 2014
    Publication date: February 12, 2015
    Inventors: James W. ADKISSON, Panglijen CANDRA, Thomas J. DUNBAR, Jeffrey P. GAMBINO, Mark D. JAFFE, Anthony K. STAMPER, Randy L. WOLF