Patents by Inventor Richard A. Blanchard

Richard A. Blanchard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180138293
    Abstract: Methods and systems for power semiconductor devices integrating multiple trench transistors on a single chip. Multiple power transistors (or active regions) are paralleled, but one transistor has a lower threshold voltage. This reduces the voltage drop when the transistor is forward-biased. In an alternative embodiment, the power device with lower threshold voltage is simply connected as a depletion diode, to thereby shunt the body diodes of the active transistors, without affecting turn-on and ON-state behavior.
    Type: Application
    Filed: November 10, 2017
    Publication date: May 17, 2018
    Applicant: MaxPower Semiconductor Inc.
    Inventors: Mohamed N. Darwish, Jun Zeng, Richard A. Blanchard
  • Publication number: 20180130898
    Abstract: The present application teaches, among other innovations, power semiconductor devices in which breakdown initiation regions, on BOTH sides of a die, are located inside the emitter/collector regions, but laterally spaced away from insulated trenches which surround the emitter/collector regions. Preferably this is part of a symmetrically-bidirectional power device of the “B-TRAN” type. In one advantageous group of embodiments (but not all), the breakdown initiation regions are defined by dopant introduction through the bottom of trench portions which lie within the emitter/collector region. In one group of embodiments (but not all), these can advantageously be separated trench portions which are not continuous with the trench(es) surrounding the emitter/collector region(s).
    Type: Application
    Filed: May 25, 2017
    Publication date: May 10, 2018
    Applicant: Ideal Power, Inc.
    Inventors: Richard A. Blanchard, William C. Alexander
  • Patent number: 9953391
    Abstract: Methods of expressing animation in a data stream are disclosed. In one embodiment, a method of expressing animation in a data stream includes defining animation states in the data stream with each state having at least one property such that properties are animated as a group. The animation states that are defined in the data stream may be expressed as an extension of a styling sheet language. The data stream may include web content and the defined animation states.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: April 24, 2018
    Assignee: Apple Inc.
    Inventors: Peter Graffagnino, Dave Hyatt, Richard Blanchard, Kevin Calhoun, Gilles Drieu, Maciej Stachowiak, Don Melton, Darin Adler
  • Publication number: 20180102457
    Abstract: The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of lenses suspended in a polymer deposited or attached over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes are substantially spherical, and have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.
    Type: Application
    Filed: December 8, 2017
    Publication date: April 12, 2018
    Applicants: NthDegree Technologies Worldwide Inc., U.S. Government as represented by the Administrator of the National Aeronautics and Spac
    Inventors: William Johnstone Ray, Mark D. Lowenthal, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Kirk A. Fuller, Donald Odell Frazier
  • Patent number: 9935188
    Abstract: An insulated gate turn-off (IGTO) device, formed as a die, has a layered structure including a p+ layer (e.g., a substrate), an n? epi layer, a p-well, vertical insulated gate electrodes formed in the p-well, and n+ regions between the gate electrodes, so that vertical npn and pnp transistors are formed. The device is formed of a matrix of cells. To turn the device on, a positive voltage is applied to the gate electrodes, referenced to the cathode. The cells further contain a vertical p-channel MOSFET, for shorting the base of the npn transistor to its emitter, to turn the npn transistor off when the p-channel MOSFET is turned on by a slight negative voltage applied to the gate. The p-channel MOSFET includes a Schottky source formed in the top surface of the npn transistor emitter.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: April 3, 2018
    Assignee: Pakal Technologies LLC
    Inventors: Richard A. Blanchard, Vladimir Rodov, Hidenori Akiyama, Woytek Tworzydlo
  • Patent number: 9900002
    Abstract: Methods, systems, circuits, and devices for power-packet-switching power converters using bidirectional bipolar transistors (B-TRANs) for switching. Four-terminal three-layer B-TRANs provide substantially identical operation in either direction with forward voltages of less than a diode drop. B-TRANs are fully symmetric merged double-base bidirectional bipolar opposite-faced devices which operate under conditions of high non-equilibrium carrier concentration, and which can have surprising synergies when used as bidirectional switches for power-packet-switching power converters. B-TRANs are driven into a state of high carrier concentration, making the on-state voltage drop very low.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: February 20, 2018
    Assignee: Ideal Power, Inc.
    Inventors: William C. Alexander, Richard A. Blanchard
  • Publication number: 20180023793
    Abstract: An exemplary printable composition of a liquid or gel suspension of diodes generally includes a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary apparatus may include: a plurality of diodes; at least a trace amount of a first solvent; and a polymeric or resin film at least partially surrounding each diode of the plurality of diodes. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
    Type: Application
    Filed: September 18, 2017
    Publication date: January 25, 2018
    Inventors: Mark David Lowenthal, William Johnstone Ray, Neil O. Shotton, Richard A. Blanchard, Brad Oraw, Mark Allan Lewandowski, Jeffrey Baldridge, Eric Anthony Perozziello
  • Publication number: 20180026122
    Abstract: Three optimizations are provided for B-TRAN devices which include field plate trenches: 1) the trench dielectric thickness is large enough to withstand the base-to-emitter voltage, but thin enough to provide good electrical coupling between the poly field plate and the adjacent p-type silicon; 2) the base contact width is small enough to provide an acceptably low reverse base contact region pinch-off voltage, but large enough to avoid degradation of both base resistance; and 3) the emitter width is small enough to keep an acceptably high current density at the emitter's center.
    Type: Application
    Filed: October 9, 2015
    Publication date: January 25, 2018
    Applicant: Ideal Power Inc.
    Inventors: Richard A. Blanchard, William C. Alexander
  • Publication number: 20180026121
    Abstract: An insulated gate turn-off (IGTO) device, formed as a die, has a layered structure including a p+ layer (e.g., a substrate), an n? epi layer, a p-well, vertical insulated gate electrodes formed in the p-well, and n+ regions between the gate electrodes, so that vertical npn and pnp transistors are formed. The device is formed of a matrix of cells. To turn the device on, a positive voltage is applied to the gate electrodes, referenced to the cathode. The cells further contain a vertical p-channel MOSFET, for shorting the base of the npn transistor to its emitter, to turn the npn transistor off when the p-channel MOSFET is turned on by a slight negative voltage applied to the gate. The p-channel MOSFET includes a Schottky source formed in the top surface of the npn transistor emitter.
    Type: Application
    Filed: July 20, 2017
    Publication date: January 25, 2018
    Inventors: Richard A. Blanchard, Vladimir Rodov, Hidenori Akiyama, Woytek Tworzydlo
  • Patent number: 9865767
    Abstract: The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of lenses suspended in a polymer deposited or attached over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes are substantially spherical, and have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.
    Type: Grant
    Filed: January 9, 2016
    Date of Patent: January 9, 2018
    Assignee: NthDegree Technologies Worldwide Inc
    Inventors: William Johnstone Ray, Mark D. Lowenthal, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Kirk A. Fuller, Donald Odell Frazier
  • Publication number: 20180006120
    Abstract: An insulated gate turn-off (IGTO) device, formed as a die, has a layered structure including a p+ layer (e.g., a substrate), an n? epi layer, a p-well, vertical insulated gate electrodes formed in the p-well, and n+ regions between the gate electrodes, so that vertical npn and pnp transistors are formed. The device is formed of a matrix of cells. To turn the device on, a positive voltage is applied to the gate electrodes, referenced to the cathode. To speed up the removal of residual electrons in the p-well after the gate electrode voltage is removed, a p+ region is added adjacent the n+ regions, and an n-layer is added below the p+ region. The cathode electrode directly contacts the p+ region and the n+ regions. During turn-off, the p+ region provides holes which recombine with the residual electrons to rapidly terminate the current flow.
    Type: Application
    Filed: June 23, 2017
    Publication date: January 4, 2018
    Inventors: Hidenori Akiyama, Vladimir Rodov, Richard A. Blanchard, Woytek Tworzydlo
  • Patent number: 9859400
    Abstract: Methods and systems for power semiconductor devices integrating multiple trench transistors on a single chip. Multiple power transistors (or active regions) are paralleled, but one transistor has a lower threshold voltage. This reduces the voltage drop when the transistor is forward-biased. In an alternative embodiment, the power device with lower threshold voltage is simply connected as a depletion diode, to thereby shunt the body diodes of the active transistors, without affecting turn-on and ON-state behavior.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: January 2, 2018
    Assignee: MaxPower Semiconductor, Inc.
    Inventors: Mohamed N. Darwish, Jun Zeng, Richard A. Blanchard
  • Publication number: 20170365683
    Abstract: In one embodiment, a power MOSFET vertically conducts current. A bottom electrode may be connected to a positive voltage, and a top electrode may be connected to a low voltage, such as a load connected to ground. A gate and/or a field plate, such as polysilicon, is within a trench. The trench has a tapered oxide layer insulating the polysilicon from the silicon walls. The oxide is much thicker near the bottom of the trench than near the top to increase the breakdown voltage. The tapered oxide is formed by implanting nitrogen into the trench walls to form a tapered nitrogen dopant concentration. This forms a tapered silicon nitride layer after an anneal. The tapered silicon nitride variably inhibits oxide growth in a subsequent oxidation step.
    Type: Application
    Filed: August 14, 2017
    Publication date: December 21, 2017
    Inventors: Richard A. Blanchard, Mohamed N. Darwish, Jun Zeng
  • Patent number: 9842917
    Abstract: Power semiconductor devices, and related methods, where majority carrier flow is divided into paralleled flows through two drift regions of opposite conductivity types.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: December 12, 2017
    Assignee: MaxPower Semiconductor, Inc.
    Inventors: Mohamed N. Darwish, Jun Zeng, Richard A. Blanchard
  • Publication number: 20170352724
    Abstract: Power devices using refilled trenches with permanent charge at or near their sidewalls. These trenches extend vertically into a drift region.
    Type: Application
    Filed: July 29, 2014
    Publication date: December 7, 2017
    Inventors: Mohamed N. Darwish, Jun Zeng, Richard A. Blanchard
  • Patent number: 9818615
    Abstract: Methods and systems for double-sided semiconductor device fabrication. Devices having multiple leads on each surface can be fabricated using a high-temperature-resistant handle wafer and a medium-temperature-resistant handle wafer. Dopants can be introduced on both sides shortly before a single long high-temperature diffusion step diffuses all dopants to approximately equal depths on both sides. All high-temperature processing occurs with no handle wafer or with a high-temperature handle wafer attached. Once a medium-temperature handle wafer is attached, no high-temperature processing steps occur. High temperatures can be considered to be those which can result in damage to the device in the presence of aluminum-based metallizations.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: November 14, 2017
    Assignee: Ideal Power, Inc.
    Inventors: Richard A. Blanchard, William C. Alexander
  • Patent number: 9812548
    Abstract: In one embodiment, a power MOSFET vertically conducts current. A bottom electrode may be connected to a positive voltage, and a top electrode may be connected to a low voltage, such as a load connected to ground. A gate and/or a field plate, such as polysilicon, is within a trench. The trench has a tapered oxide layer insulating the polysilicon from the silicon walls. The oxide is much thicker near the bottom of the trench than near the top to increase the breakdown voltage. The tapered oxide is formed by implanting nitrogen into the trench walls to form a tapered nitrogen dopant concentration. This forms a tapered silicon nitride layer after an anneal. The tapered silicon nitride variably inhibits oxide growth in a subsequent oxidation step.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: November 7, 2017
    Assignee: MAXPOWER SEMICONDUCTOR, INC.
    Inventors: Richard A. Blanchard, Mohamed N. Darwish, Jun Zeng
  • Patent number: 9806181
    Abstract: An insulated gate turn-off (IGTO) device has a PNPN layered structure so that vertical NPN and PNP transistors are formed. Trench gates are formed extending into the intermediate P-layer. The device is formed of an array of cells. A P-channel MOSFET, having a trenched gate, is formed in some of the cells. The control terminal of the IGTO device is connected to the insulated gates of all cells, including to the gate of the P-channel MOSFET, and to the intermediate P-layer. To turn the device on, a positive voltage is applied to the control terminal to turn on the NPN transistor by forward biasing its base-emitter. To turn off the IGTO device, a negative voltage is applied to the control terminal to turn on the P-channel MOSFET to short the NPN base to its emitter.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: October 31, 2017
    Assignee: Pakal Technologies LLC
    Inventors: Vladimir Rodov, Richard A. Blanchard, Hidenori Akiyama, Woytek Tworzydlo
  • Patent number: 9787304
    Abstract: Methods and systems for active charge control diodes with improved reverse recovery characteristics. An extra control terminal is added on the side of a diode nearest to its p-n junction. The control terminal connects to a control region which extends from the drift region to the cathode surface and which is most preferably separated from the cathode region by an insulated trench. During turn-off, the control terminal is most preferably driven negative relative to the cathode just before reversing the polarity of the applied external voltage.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: October 10, 2017
    Assignee: Ideal Power, Inc.
    Inventors: William C. Alexander, Richard A. Blanchard
  • Patent number: 9787298
    Abstract: Methods and systems for operating a double-base bidirectional power bipolar transistor. Two timing phases are used to transition into turn-off: one where each base is shorted to its nearest emitter/collector region, and a second one where negative drive is applied to the emitter-side base to reduce the minority carrier population in the bulk substrate. A diode prevents reverse turn-on while negative base drive is being applied.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: October 10, 2017
    Assignee: Ideal Power, Inc.
    Inventors: William C. Alexander, Richard A. Blanchard