Patents by Inventor Richard A. Burton

Richard A. Burton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200161430
    Abstract: A semiconductor device may include a semiconductor layer, spaced apart source and drain regions in the semiconductor layer with a channel region extending therebetween, and a gate on the channel region. The semiconductor device may further include a body contact in the semiconductor layer and comprising a body contact dopant diffusion blocking superlattice extending through the body contact to divide the body contact into a first body contact region and an second body contact region with the second body contact region having a same conductivity and higher dopant concentration than the first body contact region. The body contact dopant diffusion blocking superlattice may include a respective plurality of stacked groups of layers, with each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 21, 2020
    Inventors: HIDEKI TAKEUCHI, Daniel Connelly, Marek Hytha, Richard Burton, Robert J. Mears
  • Publication number: 20200161425
    Abstract: A method for making a semiconductor device may include forming spaced apart source and drain regions in a semiconductor layer with a channel region extending therebetween, and forming a gate on the channel region. The method may further include forming a body contact in the semiconductor layer and including a body contact dopant diffusion blocking superlattice extending through the body contact to divide the body contact into a first body contact region and an second body contact region with the second body contact region having a same conductivity and higher dopant concentration than the first body contact region. The body contact dopant diffusion blocking superlattice may include a respective plurality of stacked groups of layers, with each group of layers including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 21, 2020
    Inventors: HIDEKI TAKEUCHI, Daniel Connelly, Marek Hytha, Richard Burton, Robert J. Mears
  • Publication number: 20200161427
    Abstract: A method for making a FINFET may include forming spaced apart source and drain regions in a semiconductor fin with a channel region extending therebetween. At least one of the source and drain regions may be divided into a lower region and an upper region by a dopant diffusion blocking superlattice with the upper region having a same conductivity and higher dopant concentration than the lower region. The method may further include forming a gate on the channel region, depositing at least one metal layer on the upper region, and applying heat to move upward non-semiconductor atoms from the non-semiconductor monolayers to react with the at least one metal layer to form a contact insulating interface between the upper region and adjacent portions of the at least one metal layer.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 21, 2020
    Inventors: HIDEKI TAKEUCHI, DANIEL CONNELLY, MAREK HYTHA, RICHARD BURTON, ROBERT J. MEARS
  • Patent number: 10593761
    Abstract: A method for making a semiconductor device may include forming spaced apart source and drain regions in a semiconductor layer with a channel region extending therebetween. At least one of the source and drain regions may be divided into a lower region and an upper region by a dopant diffusion blocking superlattice with the upper region having a same conductivity and higher dopant concentration than the lower region. The method may further include forming a gate on the channel region, depositing at least one metal layer on the upper region, and applying heat to move upward non-semiconductor atoms from the non-semiconductor monolayers to react with the at least one metal layer to form a contact insulating interface between the upper region and adjacent portions of the at least one metal layer.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: March 17, 2020
    Assignee: ATOMERA INCORPORATED
    Inventors: Hideki Takeuchi, Daniel Connelly, Marek Hytha, Richard Burton, Robert J. Mears
  • Patent number: 10580866
    Abstract: A semiconductor device may include a semiconductor layer, spaced apart source and drain regions in the semiconductor layer with a channel region extending therebetween, and at least one dopant diffusion blocking superlattice dividing at least one of the source and drain regions into a lower region and an upper region with the upper region having a same conductivity and higher dopant concentration than the lower region. The at least one dopant diffusion blocking superlattice comprising a plurality of stacked groups of layers, with each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The semiconductor device may further include a gate on the channel region.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: March 3, 2020
    Assignee: ATOMERA INCORPORATED
    Inventors: Hideki Takeuchi, Daniel Connelly, Marek Hytha, Richard Burton, Robert J. Mears
  • Patent number: 10580867
    Abstract: A FINFET may include a semiconductor fin, spaced apart source and drain regions in the semiconductor fin with a channel region extending therebetween, and at least one dopant diffusion blocking superlattice dividing at least one of the source and drain regions into a lower region and an upper region with the upper region having a same conductivity and higher dopant concentration than the lower region. The dopant diffusion blocking superlattice may include a plurality of stacked groups of layers, with each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The semiconductor device may further include a gate on the channel region.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: March 3, 2020
    Assignee: ATOMERA INCORPORATED
    Inventors: Hideki Takeuchi, Daniel Connelly, Marek Hytha, Richard Burton, Robert J. Mears
  • Publication number: 20190279897
    Abstract: A method for making a semiconductor device may include forming a trench in a semiconductor substrate, and forming a superlattice liner covering bottom and sidewall portions of the trench. The superlattice liner may include a plurality of stacked groups of layers, with each group of layers including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include forming a semiconductor cap layer on the superlattice liner and having a dopant constrained therein by the superlattice liner, and forming a conductive body within the trench.
    Type: Application
    Filed: March 8, 2019
    Publication date: September 12, 2019
    Inventors: Robert John Stephenson, Richard Burton, Dmitri Choutov, Nyles Wynn Cody, Daniel Connelly, Robert J. Mears, Erwin Trautmann
  • Publication number: 20190280090
    Abstract: A semiconductor device may include a semiconductor substrate having a trench therein, and a superlattice liner at least partially covering bottom and sidewall portions of the trench. The superlattice liner may include a plurality of stacked groups of layers, with each group of layers including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The semiconductor device may further include a semiconductor cap layer on the superlattice liner and having a dopant constrained therein by the superlattice liner, and a conductive body within the trench.
    Type: Application
    Filed: March 8, 2019
    Publication date: September 12, 2019
    Inventors: ROBERT JOHN STEPHENSON, RICHARD BURTON, DMITRI CHOUTOV, NYLES WYNN CODY, DANIEL CONNELLY, ROBERT J, MEARS, ERWIN TRAUTMANN
  • Publication number: 20190261434
    Abstract: A wireless broadcasting device, systems including the device, and methods of programming and using the device are disclosed. The wireless broadcasting device is powered using power over Ethernet and can be used to provide proximity-based capabilities to devices that otherwise do not have such functions.
    Type: Application
    Filed: May 6, 2019
    Publication date: August 22, 2019
    Applicant: Mitel Networks Corporation
    Inventors: Peter Matthew Hillier, Scott Richard Burton
  • Patent number: 10334635
    Abstract: A wireless broadcasting device, systems including the device, and methods of programming and using the device are disclosed. The wireless broadcasting device is powered using power over Ethernet and can be used to provide proximity-based capabilities to devices that otherwise do not have such functions.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: June 25, 2019
    Assignee: Mitel Networks Corporation
    Inventors: Peter Matthew Hillier, Scott Richard Burton
  • Patent number: 10157885
    Abstract: A package structure and method for forming the same are provided. The package structure includes a first die, and the first die includes a first magnetic pad formed over a first substrate. The package structure includes a second die, and the second die includes a second magnetic pad formed over a second substrate. The package structure also includes a hybrid bonding structure formed between the first die and the second die of the second wafer. The hybrid bonding structure includes a magnetic bonding structure which is made of the first magnetic pad and the second magnetic layer.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: December 18, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Peter Yu-Fei Huang, Richard Burton Cassidy, II, Chaochieh Tsai
  • Publication number: 20180033773
    Abstract: A package structure and method for forming the same are provided. The package structure includes a first die, and the first die includes a first magnetic pad formed over a first substrate. The package structure includes a second die, and the second die includes a second magnetic pad formed over a second substrate. The package structure also includes a hybrid bonding structure formed between the first die and the second die of the second wafer. The hybrid bonding structure includes a magnetic bonding structure which is made of the first magnetic pad and the second magnetic layer.
    Type: Application
    Filed: July 29, 2016
    Publication date: February 1, 2018
    Inventors: Peter Yu-Fei HUANG, Richard Burton CASSIDY, II, Chaochieh TSAI
  • Publication number: 20160330772
    Abstract: A wireless broadcasting device, systems including the device, and methods of programming and using the device are disclosed. The wireless broadcasting device is powered using power over Ethernet and can be used to provide proximity-based capabilities to devices that otherwise do not have such functions.
    Type: Application
    Filed: May 7, 2015
    Publication date: November 10, 2016
    Inventors: Peter Matthew Hillier, Scott Richard Burton
  • Patent number: 9361770
    Abstract: An electric current flow indicator senses electrical current flowing through an electrical device and produces a visible feedback to indicate proper operation. The current flow indicator has a voltage and current regulation circuit having first and second inputs connected to first and second conductors, respectively. The circuit converts an AC line voltage carried by an electrical supply cord into a limited low voltage DC current. A toroidal core inductor coil and at least one current indicating LED are connected to the circuit. The first conductor passes through a center of the inductor coil. A transistor amplifier is connected to an output of the inductor coil for energizing the current indicating LED when an electrical current conducts through the first conductor. The flow indicator can be integrated into an electrical supply cord, a male or female electrical cord end, a single or duplex electrical outlet, or a universal plugin adapter.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: June 7, 2016
    Assignee: Osborne Industries Inc.
    Inventor: Richard Burton Murphy
  • Publication number: 20130265168
    Abstract: An electric current flow indicator senses electrical current flowing through an electrical device and produces a visible feedback to indicate proper operation. The current flow indicator has a voltage and current regulation circuit having first and second inputs connected to first and second conductors, respectively. The circuit converts an AC line voltage carried by an electrical supply cord into a limited low voltage DC current. A toroidal core inductor coil and at least one current indicating LED are connected to the circuit. The first conductor passes through a center of the inductor coil. A transistor amplifier is connected to an output of the inductor coil for energizing the current indicating LED when an electrical current conducts through the first conductor. The flow indicator can be integrated into an electrical supply cord, a male or female electrical cord end, a single or duplex electrical outlet, or a universal plugin adapter.
    Type: Application
    Filed: April 8, 2013
    Publication date: October 10, 2013
    Applicant: Osborne Industries Inc.
    Inventor: Richard Burton Murphy
  • Patent number: 7894874
    Abstract: An ultrasonic pulse echo apparatus detects an object that is moving with respect to stationary objects. An ultrasonic transducer transmits a series of ultrasound pulses in a direction that intersects a path of the moving object. An ultrasound receiver receives a series of lines of echoes from objects in the field of view of the ultrasonic signal. Each echo line corresponds to one of the ultrasonic pulses. A signal processor processes the echo lines from the moving object. The echo lines are time shifted by different amounts and combined at different time shifts to produce different composite lines. The composite line having an optimal signal-to-noise ratio is selected. Other signal processing enhancements are performed.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: February 22, 2011
    Assignee: Luna Innovations Incorporated
    Inventors: John Edward Lynch, David Mark Blaker, David J. Colatosti, Richard Burton Mack, Jr.
  • Publication number: 20100262009
    Abstract: An ultrasonic pulse echo apparatus detects an object that is moving with respect to stationary objects. An ultrasonic transducer transmits a series of ultrasound pulses in a direction that intersects a path of the moving object. An ultrasound receiver receives a series of lines of echoes from objects in the field of view of the ultrasonic signal. Each echo line corresponds to one of the ultrasonic pulses. A signal processor processes the echo lines from the moving object. The echo lines are time shifted by different amounts and combined at different time shifts to produce different composite lines. The composite line having an optimal signal-to-noise ratio is selected. Other signal processing enhancements are performed.
    Type: Application
    Filed: May 8, 2006
    Publication date: October 14, 2010
    Applicant: Luna Innovations Incorporated
    Inventors: John Edward Lynch, David Mark Blaker, David J. Colatosti, Richard Burton Mack, JR.
  • Patent number: 7351495
    Abstract: An alkaline cell having a flat housing, preferably of cuboid shape. The cell can have an anode comprising zinc and a cathode comprising MnO2. The housing can have a relatively small overall thickness, typically between about 5 and 10 mm. Cell contents can be supplied through an open end in the housing and an end cap assembly inserted therein to seal the cell. There can be a gap between separator and cathode for insertion of additional electrolyte. The end cap assembly includes a vent mechanism, preferably a grooved vent, which can activate, when gas pressure within the cell reaches a threshold level typically between about 250 and 800 psig (1724×103 and 5515×103 pascal gage). The cell can have a supplemental vent mechanism such as a laser welded region on the surface of the housing which may activate at higher pressure levels.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: April 1, 2008
    Assignee: The Gillette Company
    Inventors: Philip Trainer, Terry Soon, Richard Burton, James Rozelle
  • Publication number: 20040211053
    Abstract: An alkaline cell having a flat housing, preferably of cuboid shape. The cell can have an anode comprising zinc and a cathode comprising MnO2. The housing can have a relatively small overall thickness, typically between about 5 and 10 mm. Cell contents can be supplied through an open end in the housing and an end cap assembly inserted therein to seal the cell. There can be a gap between separator and cathode for insertion of additional electrolyte. The end cap assembly includes a vent mechanism, preferably a grooved vent, which can activate, when gas pressure within the cell reaches a threshold level typically between about 250 and 800 psig (1724×103 and 5515×103 pascal gage). The cell can have a supplemental vent mechanism such as a laser welded region on the surface of the housing which may activate at higher pressure levels.
    Type: Application
    Filed: November 26, 2003
    Publication date: October 28, 2004
    Inventors: Philip Trainer, Terry Soon, Richard Burton, James Rozelle
  • Patent number: D591995
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: May 12, 2009
    Inventor: Richard Burton