Patents by Inventor Richard Carter

Richard Carter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8357978
    Abstract: Disclosed herein are various methods of forming replacement gate structures on semiconductor devices and devices incorporating such gate structures. In one example, the device includes a plurality of gate structures and at least one sidewall spacer positioned proximate each of the gate structures, a metal silicide region in a source/drain region formed in a substrate, wherein the metal silicide region extend laterally so as to contact the sidewall spacer positioned proximate each of the gate structures and a conductive contact positioned between the gate structures that conductively contacts the metal silicide region, wherein the conductive contact has a bottom portion that is wider than an upper portion of the conductive contact.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: January 22, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Peter Baars, Andy Wei, Richard Carter
  • Publication number: 20130010521
    Abstract: Embodiments of the present invention are directed systems and methods for reading the resistance states of crossbar junctions of a crossbar array. In one aspect, a system includes one or more sense amplifiers (512-514) connected to column wires of the crossbar array, a reference row wire (516) connected to each sense amp, and a wire driver (518) connected to the reference row wire and configured to drive the reference row wire. The sense amplifiers are configured so that when a selected row wire of the crossbar array is driven by a sense voltage, the column wires are held at approximately zero volts and pass currents through the column wires and sense amplifiers to the reference row wire so that resistive voltage losses along the reference row wire substantially mirror the resistive voltage losses along the selected row wire, allowing the sense amplifiers to determine the crossbar junction resistance states.
    Type: Application
    Filed: March 25, 2010
    Publication date: January 10, 2013
    Inventor: Richard Carter
  • Patent number: 8343837
    Abstract: The work function of a high-k gate electrode structure may be adjusted in a late manufacturing stage on the basis of a lanthanum species in an N-channel transistor, thereby obtaining the desired high work function in combination with a typical conductive barrier material, such as titanium nitride. For this purpose, in some illustrative embodiments, the lanthanum species may be formed directly on the previously provided metal-containing electrode material, while an efficient barrier material may be provided in the P-channel transistor, thereby avoiding undue interaction of the lanthanum species in the P-channel transistor.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: January 1, 2013
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Richard Carter, Sven Beyer, Joachim Metzger, Robert Binder
  • Publication number: 20120211837
    Abstract: When forming sophisticated semiconductor devices, a replacement gate approach may be applied in combination with a self-aligned contact regime by forming the self-aligned contacts prior to replacing the placeholder material of the gate electrode structures.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 23, 2012
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Peter Baars, Till Schloesser, Frank Jakubowski, Andy Wei, Richard Carter, Matthias Schaller
  • Publication number: 20120211808
    Abstract: When forming sophisticated semiconductor devices, three-dimensional transistors in combination with planar transistors may be formed on the basis of a replacement gate approach and self-aligned contact elements by forming the semiconductor fins in an early manufacturing stage, i.e., upon forming shallow trench isolations, wherein the final electrically effective height of the semiconductor fins may be adjusted after the provision of self-aligned contact elements and during the replacement gate approach.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 23, 2012
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Andy Wei, Peter Baars, Richard Carter, Frank Ludwig
  • Publication number: 20120193727
    Abstract: Sophisticated gate electrode structures may be formed by providing a cap layer including a desired species that may diffuse into the gate dielectric material prior to performing a treatment for stabilizing the sensitive gate dielectric material. In this manner, complex high-k metal gate electrode structures may be formed on the basis of reduced temperatures and doses for a threshold adjusting species compared to conventional strategies. Moreover, a single metal-containing electrode material may be deposited for both types of transistors.
    Type: Application
    Filed: April 12, 2012
    Publication date: August 2, 2012
    Inventors: Richard Carter, Martin Trentzsch, Sven Beyer, Rohit Pal
  • Publication number: 20120190313
    Abstract: A switch element includes a switch device having a drain, a source and a plurality of gates, and at least one additional interconnect located between the plurality of gates, the additional interconnect operative to establish a constant potential between the at least two gates.
    Type: Application
    Filed: April 2, 2012
    Publication date: July 26, 2012
    Applicant: Skyworks Solutions, Inc.
    Inventors: Dima Prikhodko, Jerod F. Mason, Steven P. Matte, John Pessia, Jason Chiesa, Sergey Nabokin, Gene A. Tkachenko, Richard A. Carter, Steven C. Sprinkle, Mikhail Shirokov
  • Publication number: 20120153398
    Abstract: Generally, the subject matter disclosed herein relates to sophisticated semiconductor devices and methods for forming the same, wherein the pitch between adjacent gate electrodes is aggressively scaled, and wherein self-aligning contact elements may be utilized to avoid the high electrical resistance levels commonly associated with narrow contact elements formed using typically available photolithography techniques. One illustrative embodiment includes forming first and second gate electrode structures above a semiconductor substrate, then forming a first layer of a first dielectric material adjacent to or in contact with the sidewalls of each of the first and second gate electrode structures.
    Type: Application
    Filed: December 21, 2010
    Publication date: June 21, 2012
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Peter Baars, Richard Carter, Andy Wei
  • Patent number: 8198192
    Abstract: Sophisticated gate electrode structures may be formed by providing a cap layer including a desired species that may diffuse into the gate dielectric material prior to performing a treatment for stabilizing the sensitive gate dielectric material. In this manner, complex high-k metal gate electrode structures may be formed on the basis of reduced temperatures and doses for a threshold adjusting species compared to conventional strategies. Moreover, a single metal-containing electrode material may be deposited for both types of transistors.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: June 12, 2012
    Assignee: GlobalFoundries Inc.
    Inventors: Richard Carter, Martin Trentzsch, Sven Beyer, Rohit Pal
  • Patent number: 8173501
    Abstract: In a manufacturing strategy for providing high-k metal gate electrode structures in an early manufacturing stage, process-related non-uniformities during and after the patterning of the gate electrode structures may be reduced by providing a superior surface topography. To this end, the material loss in the isolation region may generally be reduced and a more symmetrical exposure to reactive etch atmospheres during the subsequent removal of the growth mask may be accomplished by providing an additional etch mask when removing the growth mask from the active regions of N-channel transistors, after the growth of the threshold adjusting semiconductor material on the active regions of the P-channel transistors.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: May 8, 2012
    Assignee: Globalfoundries Inc.
    Inventors: Stephan Kronholz, Markus Lenski, Richard Carter
  • Patent number: 8175523
    Abstract: A switch element includes a switch device having a drain, a source and a plurality of gates, and at least one additional interconnect located between the plurality of gates, the additional interconnect operative to establish a constant potential between the at least two gates.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: May 8, 2012
    Assignee: Skyworks Solutions, Inc.
    Inventors: Dima Prikhodko, Jerod F. Mason, Steven P. Matte, John Pessia, Jason Chiesa, Sergey Nabokin, Gene A. Tkachenko, Richard A. Carter, Steven C. Sprinkle, Mikhail Shirokov
  • Publication number: 20120009751
    Abstract: In sophisticated approaches for forming high-k metal gate electrode structures in an early manufacturing stage, a threshold adjusting semiconductor alloy may be deposited on the basis of a selective epitaxial growth process without affecting the back side of the substrates. Consequently, any negative effects, such as contamination of substrates and process tools, reduced surface quality of the back side and the like, may be suppressed or reduced by providing a mask material and preserving the material at least during the selective epitaxial growth process.
    Type: Application
    Filed: September 20, 2011
    Publication date: January 12, 2012
    Inventors: Stephan Kronholz, Berthold Reimes, Richard Carter, Fernando Koch, Gisela Schammler
  • Publication number: 20110266625
    Abstract: Gate failures in sophisticated high-k metal gate electrode structures formed in an early manufacturing stage may be reduced by forming a protective liner material after the incorporation of a strain-inducing semiconductor alloy and prior to performing any critical wet chemical processes. In this manner, attacks in the sensitive gate materials after the incorporation of the strain-inducing semiconductor material may be avoided, without influencing the further processing of the device. In this manner, very sophisticated circuit designs may be applied in sophisticated gate first approaches.
    Type: Application
    Filed: December 8, 2010
    Publication date: November 3, 2011
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Richard Carter, Sven Beyer, Markus Lenski, Patrick Press
  • Publication number: 20110269277
    Abstract: In a manufacturing strategy for providing high-k metal gate electrode structures in an early manufacturing stage, process-related non-uniformities during and after the patterning of the gate electrode structures may be reduced by providing a superior surface topography. To this end, the material loss in the isolation region may generally be reduced and a more symmetrical exposure to reactive etch atmospheres during the subsequent removal of the growth mask may be accomplished by providing an additional etch mask when removing the growth mask from the active regions of N-channel transistors, after the growth of the threshold adjusting semiconductor material on the active regions of the P-channel transistors.
    Type: Application
    Filed: December 9, 2010
    Publication date: November 3, 2011
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Stephan Kronholz, Markus Lenski, Richard Carter
  • Patent number: 8048748
    Abstract: In sophisticated approaches for forming high-k metal gate electrode structures in an early manufacturing stage, a threshold adjusting semiconductor alloy may be deposited on the basis of a selective epitaxial growth process without affecting the back side of the substrates. Consequently, any negative effects, such as contamination of substrates and process tools, reduced surface quality of the back side and the like, may be suppressed or reduced by providing a mask material and preserving the material at least during the selective epitaxial growth process.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: November 1, 2011
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Stephan Kronholz, Berthold Reimer, Richard Carter, Fernando Koch, Gisela Schammler
  • Publication number: 20110189831
    Abstract: In sophisticated approaches for forming high-k metal gate electrode structures in an early manufacturing stage, a threshold adjusting semiconductor alloy may be deposited on the basis of a selective epitaxial growth process without affecting the back side of the substrates. Consequently, any negative effects, such as contamination of substrates and process tools, reduced surface quality of the back side and the like, may be suppressed or reduced by providing a mask material and preserving the material at least during the selective epitaxial growth process.
    Type: Application
    Filed: October 29, 2010
    Publication date: August 4, 2011
    Inventors: Stephan Kronholz, Berthold Reimer, Richard Carter, Fernando Koch, Gisela Schammler
  • Publication number: 20110151776
    Abstract: A switch element includes a switch device having a drain, a source and a plurality of gates, and at least one additional interconnect located between the plurality of gates, the additional interconnect operative to establish a constant potential between the at least two gates.
    Type: Application
    Filed: December 29, 2010
    Publication date: June 23, 2011
    Applicant: SKYWORKS SOLUTIONS, INC.
    Inventors: Dima Prikhodko, Jerod F. Mason, Steven P. Matte, John Pessia, Jason Chiesa, Sergey Nabokin, Gene A. Tkachenko, Richard A. Carter, Steven C. Sprinkle, Mikhail Shirokov
  • Patent number: 7877058
    Abstract: A switch element includes a switch device having a drain, a source and a plurality of gates, and at least one additional interconnect located between the plurality of gates, the additional interconnect operative to establish a constant potential between the at least two gates.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: January 25, 2011
    Assignee: Skyworks Solutions, Inc.
    Inventors: Dima Prikhodko, Jerod F. Mason, Steven P. Matte, John Pessia, Jason Chiesa, Sergey Nabokin, Gene A. Tkachenko, Richard A. Carter, Steven C. Sprinkle, Mikhail Shirokov
  • Publication number: 20100327373
    Abstract: Sophisticated gate electrode structures for N-channel transistors and P-channel transistors are patterned on the basis of substantially the same configuration while, nevertheless, the work function adjustment may be accomplished in an early manufacturing stage. For this purpose, diffusion layer and cap layer materials are removed after incorporating the desired work function metal species into the high-k dielectric material and subsequently a common gate layer stack is deposited and subsequently patterned.
    Type: Application
    Filed: May 26, 2010
    Publication date: December 30, 2010
    Inventors: Richard Carter, Falk Graetsch, Martin Trentzsch, Sven Beyer, Berthold Reimer, Robert Binder, Boris Bayha
  • Patent number: 7839234
    Abstract: According to one exemplary embodiment, a switching module includes a first harmonic phase tuning filter coupled to a first input of an RF switch. The first harmonic phase tuning filter is configured to provide an output impedance that substantially matches an input impedance of the RF switch at approximately a fundamental frequency and to provide a high impedance at approximately a harmonic frequency generated by the RF switch. The first harmonic phase tuning filter includes an LC circuit coupled between input and output terminals of the first harmonic phase tuning filter and tuned to provide the high impedance at approximately the harmonic frequency generated by the RF switch. The RF switching module further includes a second harmonic phase tuning filter coupled to a second input of the RF switch. The first and second harmonic phase tuning filters can be fabricated on a single semiconductor die.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: November 23, 2010
    Assignee: Skyworks Solutions, Inc.
    Inventors: Dima Prikhodko, Gene A. Tkachenko, Richard A. Carter, Sergey Nabokin, Jason Chiesa, Steven C. Sprinkle, Yu Zhu, Beverly A. Peluso