Patents by Inventor Robert H. Dennard

Robert H. Dennard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130015912
    Abstract: SOI CMOS structures having at least one programmable electrically floating backplate are provided. Each electrically floating backplate is individually programmable. Programming can be performed by injecting electrons into each conductive floating backplate. Erasure of the programming can be accomplished by tunneling the electrons out of the floating backplate. At least one of two means can accomplish programming of the electrically floating backgate. The two means include Fowler-Nordheim tunneling, and hot electron injection using an SOI pFET. Hot electron injection using pFET can be done at much lower voltage than injection by tunneling electron injection.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 17, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATON
    Inventors: Jin Cai, Robert H. Dennard, Ali Khakifirooz, Tak H. Ning, Jeng-Bang Yau
  • Publication number: 20130005095
    Abstract: A method to fabricate a structure includes providing a silicon-on-insulator wafer, implanting through a semiconductor layer and an insulating layer a functional region having a first type of conductivity to be adjacent to a top surface of the substrate; implanting within the functional region through the semiconductor layer and the insulating layer an electrically floating back gate region having a second type of conductivity; forming isolation regions in the semiconductor layer; forming first and second transistor devices to have the same type of conductivity over the semiconductor layer such that one of the transistor devices overlies the implanted back gate region and the other one of the transistor devices overlies only the underlying top surface of the functional region not overlapped by the implanted back gate region; and providing an electrical contact to the functional region for applying a bias voltage.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Applicant: International Business Machines Corporation
    Inventors: Jin Cai, Robert H. Dennard, Ali Khakifirooz
  • Publication number: 20120313216
    Abstract: An example embodiment is a complementary transistor inverter circuit. The circuit includes a semiconductor-on-insulator (SOI) substrate, a lateral PNP bipolar transistor fabricated on the SOI substrate, and a lateral NPN bipolar transistor fabricated on the SOI substrate. The lateral PNP bipolar transistor includes a PNP base, a PNP emitter, and a PNP collector. The lateral NPN bipolar transistor includes a NPN base, a NPN emitter, and a NPN collector. The PNP base, the PNP emitter, the PNP collector, the NPN base, the NPN emitter, and the NPN collector abut the buried insulator of the SOI substrate.
    Type: Application
    Filed: June 12, 2011
    Publication date: December 13, 2012
    Applicant: International Business Machines Corporation
    Inventors: Jin Cai, Robert H. Dennard, Wilfried E. Haensch, Tak H. Ning
  • Patent number: 8324667
    Abstract: A circuit comprises a control line and a two terminal semiconductor device having first and second terminals. The first terminal is coupled to a signal line, and the second terminal is coupled to the control line. The two terminal semiconductor device is adapted to have a capacitance when a voltage on the first terminal relative to the second terminal is above a threshold voltage and to have a smaller capacitance when a voltage on the first terminal relative to the second terminal is below the threshold voltage. The control line is coupled to a control signal and the signal line is coupled to a signal and is output of the circuit. A signal is placed on the signal line and voltage on the control line is modified (e.g., raised in the case of n-type devices, or lowered for a p-type devices). When the signal falls below the threshold voltage, the two terminal semiconductor device acts as a very small capacitor and the output of the circuit will be a small value.
    Type: Grant
    Filed: January 5, 2004
    Date of Patent: December 4, 2012
    Assignee: International Business Machines Corporation
    Inventors: Wing K. Luk, Robert H. Dennard
  • Publication number: 20120302039
    Abstract: Shallow trenches are formed around a vertical stack of a buried insulator portion and a top semiconductor portion. A dielectric material layer is deposited directly on sidewalls of the top semiconductor portion. Shallow trench isolation structures are formed by filling the shallow trenches with a dielectric material such as silicon oxide. After planarization, the top semiconductor portion is laterally contacted and surrounded by the dielectric material layer. The dielectric material layer prevents exposure of the handle substrate underneath the buried insulator portion during wet etches, thereby ensuring electrical isolation between the handle substrate and gate electrodes subsequently formed on the top semiconductor portion.
    Type: Application
    Filed: August 3, 2012
    Publication date: November 29, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert H. Dennard, Marwan H. Khater, Leathen Shi, Jeng-Bang Yau
  • Publication number: 20120299080
    Abstract: A structure includes a semiconductor substrate having a first type of conductivity and a top surface; an insulating layer disposed over the top surface; a semiconductor layer disposed over the insulating layer and a plurality of transistor devices disposed upon the semiconductor layer. Each transistor device includes a source, a drain and a gate stack defining a channel between the source and the drain, where some transistor devices have a first type of channel conductivity and the remaining transistor devices have a second type of channel conductivity. The structure further includes a well region formed adjacent to the top surface of the substrate and underlying the plurality of transistor devices, the well region having a second type of conductivity and extending to a first depth within the substrate.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 29, 2012
    Applicant: International Business Machines Corporation
    Inventors: Robert H. Dennard, Terence B. Hook
  • Publication number: 20120299105
    Abstract: A structure has a functional region having a first type of conductivity and a top surface. The functional region is connected to a bias contact. The structure further includes an insulating layer; a semiconductor layer and first and second transistor devices having the same type of conductivity disposed upon the semiconductor layer. The structure further includes a first back gate region adjacent to the top surface and underlying one of the transistor devices, the first back gate region having a second type of conductivity; and a second back gate region adjacent to the top surface and underlying the other one of the transistor devices, the second back gate region having the first type of conductivity. The first transistor device has a first characteristic threshold voltage and the second transistor device has a second characteristic threshold voltage that differs from the first characteristic threshold voltage.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 29, 2012
    Applicant: International Business Machines Corporation
    Inventors: Jin Cai, Robert H. Dennard, Ali Khakifirooz
  • Publication number: 20120300544
    Abstract: A gated diode memory cell is provided, including one or more transistors, such as field effect transistors (“FETs”), and a gated diode in signal communication with the FETs such that the gate of the gated diode is in signal communication with the source of a first FET, wherein the gate of the gated diode forms one terminal of the storage cell and the source of the gated diode forms another terminal of the storage cell, the drain of the first FET being in signal communication with a bitline (“BL”) and the gate of the first FET being in signal communication with a write wordline (“WLw”), and the source of the gated diode being in signal communication with a read wordline (“WLr”).
    Type: Application
    Filed: August 9, 2012
    Publication date: November 29, 2012
    Applicant: International Business Machines Corporation
    Inventors: Wing K. Luk, Robert H. Dennard
  • Publication number: 20120284541
    Abstract: A heterogeneous three-dimensional (3-D) stacked apparatus is provided that includes multiple layers arranged in a stacked configuration with a lower layer configured to receive a board-level voltage and one or more upper layers stacked above the lower layer. The heterogeneous 3-D stacked apparatus also includes multiple tiles per layer, where each tile is designed to receive a separately regulated voltage. The heterogeneous 3-D stacked apparatus additionally includes at least one layer in the one or more upper layers with voltage converters providing the separately regulated voltage converted from the board-level voltage.
    Type: Application
    Filed: July 18, 2012
    Publication date: November 8, 2012
  • Publication number: 20120262226
    Abstract: An on-chip voltage conversion apparatus for integrated circuits includes a first capacitor; a first NFET device configured to selectively couple a first electrode of the first capacitor to a low side voltage rail of a first voltage domain; a first PFET device configured to selectively couple the first electrode of the first capacitor to a high side voltage rail of the first voltage domain; a second NFET device configured to selectively couple a second electrode of the first capacitor to a low side voltage rail of a second voltage domain, wherein the low side voltage rail of the second voltage domain corresponds to the high side voltage rail of the first voltage domain; and a second PFET device configured to selectively couple the second electrode of the first capacitor to a high side voltage rail of the second voltage domain.
    Type: Application
    Filed: June 26, 2012
    Publication date: October 18, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert H. Dennard, Brian L. Ji, Robert K. Montoye
  • Patent number: 8276002
    Abstract: A heterogeneous three-dimensional (3-D) stacked apparatus is provided that includes multiple layers arranged in a stacked configuration with a lower layer configured to receive a board-level voltage and one or more upper layers stacked above the lower layer. The heterogeneous 3-D stacked apparatus also includes multiple tiles per layer, where each tile is designed to receive a separately regulated voltage. The heterogeneous 3-D stacked apparatus additionally includes at least one layer in the one or more upper layers with voltage converters providing the separately regulated voltage converted from the board-level voltage.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: September 25, 2012
  • Publication number: 20120217561
    Abstract: A semiconductor device including a charge storage element present in a buried dielectric layer of the substrate on which the semiconductor device is formed. Charge injection may be used to introduce charge to the charge storage element of the buried dielectric layer that is present within the substrate. The charge that is injected to the charge storage element may be used to adjust the threshold voltage (Vt) of each of the semiconductor devices within an array of semiconductor devices that are present on the substrate.
    Type: Application
    Filed: February 28, 2011
    Publication date: August 30, 2012
    Applicant: International Business Machines Corporation
    Inventors: Ali Khakifirooz, Jin Cai, Kangguo Cheng, Robert H. Dennard, Tak H. Ning
  • Patent number: 8248152
    Abstract: An on-chip voltage conversion apparatus for integrated circuits includes a first capacitor; a first NFET device configured to selectively couple a first electrode of the first capacitor to a low side voltage rail of a first voltage domain; a first PFET device configured to selectively couple the first electrode of the first capacitor to a high side voltage rail of the first voltage domain; a second NFET device configured to selectively couple a second electrode of the first capacitor to a low side voltage rail of a second voltage domain, wherein the low side voltage rail of the second voltage domain corresponds to the high side voltage rail of the first voltage domain; and a second PFET device configured to selectively couple the second electrode of the first capacitor to a high side voltage rail of the second voltage domain.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: August 21, 2012
    Assignee: International Business Machines Corporation
    Inventors: Robert H. Dennard, Brian L. Ji, Robert K. Montoye
  • Patent number: 8236661
    Abstract: A method of forming a self-aligned well implant for a transistor includes forming a patterned gate structure over a substrate, including a gate conductor, a gate dielectric layer and sidewall spacers, the substrate including an undoped semiconductor layer beneath the gate dielectric layer and a doped semiconductor layer beneath the undoped semiconductor layer; removing portions of the undoped semiconductor layer and the doped semiconductor layer left unprotected by the patterned gate structure, wherein a remaining portion of the undoped semiconductor layer beneath the patterned gate structure defines a transistor channel and a remaining portion of the doped semiconductor layer beneath the patterned gate structure defines the self-aligned well implant; and growing a new semiconductor layer at locations corresponding to the removed portions of the undoped semiconductor layer and the doped semiconductor layer, the new semiconductor layer corresponding to source and drain regions of the transistor.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: August 7, 2012
    Assignee: International Business Machines Corporation
    Inventors: Robert H. Dennard, Brian J. Greene, Zhibin Ren, Xinlin Wang
  • Patent number: 8227865
    Abstract: A semiconductor wafer structure for manufacturing integrated circuit devices includes a bulk substrate; a lower insulating layer formed on the bulk substrate, the lower insulating layer formed from a pair of separate insulation layers having a bonding interface therebetween; an electrically conductive layer formed on the lower insulating layer, the electrically conductive layer further having one or more shallow trench isolation (STI) regions formed therein; an etch stop layer formed on the electrically conductive layer and the one or more STI regions; an upper insulating layer formed on the etch stop layer; and a semiconductor layer formed on the upper insulating layer. A subsequent active area level STI scheme, in conjunction with front gate formation over the semiconductor layer, is also disclosed.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: July 24, 2012
    Assignee: International Business Machines Corporation
    Inventors: Robert H. Dennard, David R. Greenberg, Amlan Majumdar, Leathen She, Jeng-Bang Yau
  • Patent number: 8227792
    Abstract: Thermal mixing methods of forming a substantially relaxed and low-defect SGOI substrate material are provided. The methods include a patterning step which is used to form a structure containing at least SiGe islands formed atop a Ge resistant diffusion barrier layer. Patterning of the SiGe layer into islands changes the local forces acting at each of the island edges in such a way so that the relaxation force is greater than the forces that oppose relaxation. The absence of restoring forces at the edges of the patterned layers allows the final SiGe film to relax further than it would if the film was continuous.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: July 24, 2012
    Assignee: International Business Machines Corporation
    Inventors: Paul D. Agnello, Stephen W. Bedell, Robert H. Dennard, Anthony G. Domenicucci, Keith E. Fogel, Devendra K. Sadana
  • Publication number: 20120169319
    Abstract: A reversible, switched capacitor voltage conversion apparatus includes a plurality of individual unit cells coupled to one another in stages, with each unit cell comprising multiple sets of inverter devices arranged in a stacked configuration, such that each set of inverter devices operates in separate voltage domains wherein outputs of inverter devices in adjacent voltage domains are capacitively coupled to one another such that a first terminal of a capacitor is coupled to an output of a first inverter device in a first voltage domain, and a second terminal of the capacitor is coupled to an output of a second inverter in a second voltage domain; and wherein, for both the first and second voltage domains, outputs of at least one of the plurality of individual unit cells serve as corresponding inputs for at least another one of the plurality of individual unit cells.
    Type: Application
    Filed: March 14, 2012
    Publication date: July 5, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert H. Dennard, Brian L. Ji
  • Publication number: 20120168864
    Abstract: A transistor device includes a patterned gate structure formed over a substrate, the patterned gate structure including a gate conductor, a gate dielectric layer and sidewall spacers; and a doped well implant formed in the substrate, the well implant being self-aligned with the patterned gate structure.
    Type: Application
    Filed: March 13, 2012
    Publication date: July 5, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert H. Dennard, Brian J. Greene, Zhibin Ren, Xinlin Wang
  • Publication number: 20120112309
    Abstract: A semiconductor substrate structure for manufacturing integrated circuit devices includes a bulk substrate; a lower insulating layer formed on the bulk substrate, the lower insulating layer formed from a pair of separate insulation layers having a bonding interface therebetween; an electrically conductive layer formed on the lower insulating layer; an insulator with etch stop characteristics formed on the electrically conductive layer; an upper insulating layer formed on the etch stop layer; and a semiconductor layer formed on the upper insulating layer. A scheme of subsequently building a dual-depth shallow trench isolation with the deeper STI in the back gate layer self-aligned to the shallower STI in the active region in such a semiconductor substrate is also disclosed.
    Type: Application
    Filed: January 16, 2012
    Publication date: May 10, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert H. Dennard, David R. Greenberg, Amlan Majumdar, Leathen Shi, Jeng-Bang Yau
  • Patent number: 8174288
    Abstract: An integrated circuit (IC) system includes a plurality of ICs configured in a stacked voltage domain arrangement such that a low side supply rail of at least one of ICs is common with a high side supply rail of at least another of the ICs; a reversible voltage converter coupled to power rails of each of the plurality of ICs, the reversible voltage converter configured for stabilizing individual voltage domains corresponding to each IC; and one or more data voltage level shifters configured to facilitate data communication between ICs operating in different voltage domains, wherein an input signal of a given logic state corresponding to one voltage in a first voltage domain is shifted to an output signal of the same logic state at another voltage in a second voltage domain.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: May 8, 2012
    Assignee: International Business Machines Corporation
    Inventors: Robert H. Dennard, Brian L. Ji