Patents by Inventor Robert Seidel

Robert Seidel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110212616
    Abstract: In sophisticated metallization systems, vertical contacts and metal lines may be formed on the basis of a dual inlaid strategy, wherein an edge rounding or corner rounding may be applied to the trench hard mask prior to forming the via openings on the basis of a self-aligned via trench concept. Consequently, self-aligned interconnect structures may be obtained, while at the same time providing superior fill conditions during the deposition of barrier materials and conductive fill materials.
    Type: Application
    Filed: November 4, 2010
    Publication date: September 1, 2011
    Inventors: Robert Seidel, Thomas Werner
  • Publication number: 20110210447
    Abstract: In sophisticated semiconductor devices, contact elements in the contact level may be formed by patterning the contact openings and filling the contact openings with the metal of the first metallization layer in a common deposition sequence. To this end, in some illustrative embodiments, a sacrificial fill material may be provided in contact openings prior to depositing the dielectric material of the first metallization layer.
    Type: Application
    Filed: November 4, 2010
    Publication date: September 1, 2011
    Inventors: Robert Seidel, Kai Frohberg, Carsten Peters
  • Publication number: 20110156270
    Abstract: When forming contact levels of sophisticated semiconductor devices, a superior bottom to top fill behavior may be accomplished by applying an activation material selectively in the lower part of the contact openings and using a selective deposition technique. Consequently, deposition-related irregularities, such as voids, may be efficiently suppressed even for high aspect ratio contact openings.
    Type: Application
    Filed: October 25, 2010
    Publication date: June 30, 2011
    Inventors: Robert Seidel, Markus Nopper, Axel Preusse
  • Publication number: 20110117723
    Abstract: By forming metallization structures on the basis of an imprint technique, in which via openings and trenches may be commonly formed, a significant reduction of process complexity may be achieved due to the omission of at least one further alignment process as required in conventional process techniques. Furthermore, the flexibility and efficiency of imprint lithography may be increased by providing appropriately designed imprint molds in order to provide via openings and trenches exhibiting an increased fill capability, thereby also improving the performance of the finally obtained metallization structures with respect to reliability, resistance against electromigration and the like.
    Type: Application
    Filed: January 27, 2011
    Publication date: May 19, 2011
    Inventors: Robert Seidel, Carsten Peters, Frank Feustel
  • Patent number: 7928004
    Abstract: By forming metallization structures on the basis of an imprint technique, in which via openings and trenches may be commonly formed, a significant reduction of process complexity may be achieved due to the omission of at least one further alignment process as required in conventional process techniques. Furthermore, the flexibility and efficiency of imprint lithography may be increased by providing appropriately designed imprint molds in order to provide via openings and trenches exhibiting an increased fill capability, thereby also improving the performance of the finally obtained metallization structures with respect to reliability, resistance against electromigration and the like.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: April 19, 2011
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Robert Seidel, Carsten Peters, Frank Feustel
  • Patent number: 7875514
    Abstract: By selectively providing a buffer layer having an appropriate thickness, height differences occurring during the deposition of an SACVD silicon dioxide may be reduced during the formation of an interlayer dielectric stack of advanced semiconductor devices. The buffer material may be selectively provided after the deposition of contact etch stop layers of both types of internal stress or may be provided after the deposition of one type of dielectric material and may be used during the subsequent patterning of the other type of dielectric stop material as an efficient etch stop layer.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: January 25, 2011
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Ralf Richter, Robert Seidel, Carsten Peters
  • Publication number: 20100301489
    Abstract: In a sophisticated metallization system of a semiconductor device, air gaps may be formed in a self-aligned manner on the basis of a sacrificial material, such as a carbon material, which is deposited after the patterning of a dielectric material for forming therein a via opening. Consequently, superior process conditions during the patterning of the via opening and the sacrificial material in combination with a high degree of flexibility in selecting appropriate materials for the dielectric layer and the sacrificial layer may provide superior uniformity and device characteristics.
    Type: Application
    Filed: May 24, 2010
    Publication date: December 2, 2010
    Inventors: Robert Seidel, Thomas Werner
  • Publication number: 20100285668
    Abstract: By selectively providing a buffer layer having an appropriate thickness, height differences occurring during the deposition of an SACVD silicon dioxide may be reduced during the formation of an interlayer dielectric stack of advanced semiconductor devices. The buffer material may be selectively provided after the deposition of contact etch stop layers of both types of internal stress or may be provided after the deposition of one type of dielectric material and may be used during the subsequent patterning of the other type of dielectric stop material as an efficient etch stop layer.
    Type: Application
    Filed: July 22, 2010
    Publication date: November 11, 2010
    Inventors: Ralf Richter, Robert Seidel, Carsten Peters
  • Publication number: 20100219534
    Abstract: In a sophisticated metallization system, self-aligned air gaps may be provided in a locally selective manner by using a radiation sensitive material for filling recesses or for forming therein the metal regions. Consequently, upon selectively exposing the radiation sensitive material, a selective removal of exposed or non-exposed portions may be accomplished, thereby resulting in a highly efficient overall manufacturing flow.
    Type: Application
    Filed: February 18, 2010
    Publication date: September 2, 2010
    Inventors: Robert Seidel, Thomas Werner
  • Patent number: 7785956
    Abstract: By selectively providing a buffer layer having an appropriate thickness, height differences occurring during the deposition of an SACVD silicon dioxide may be reduced during the formation of an interlayer dielectric stack of advanced semiconductor devices. The buffer material may be selectively provided after the deposition of contact etch stop layers of both types of internal stress or may be provided after the deposition of one type of dielectric material and may be used during the subsequent patterning of the other type of dielectric stop material as an efficient etch stop layer.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: August 31, 2010
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Ralf Richter, Robert Seidel, Carsten Peters
  • Patent number: 7745327
    Abstract: By appropriately designing a plurality of deposition steps and intermediate sputter processes, the formation of a barrier material within a via opening may be accomplished on the basis of a highly efficient process strategy that readily integrates conductive cap layers formed above metal-containing regions into well-approved process sequences.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: June 29, 2010
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Axel Preusse, Michael Friedemann, Robert Seidel, Berit Freudenberg
  • Publication number: 20100133648
    Abstract: In sophisticated metallization systems, air gaps may be formed on the basis of a self-aligned patterning regime during which the conductive cap material of metal lines may be protected by providing one or more materials, which may subsequently be removed. Consequently, the etch behavior and the electrical characteristics of metal lines during the self-aligned patterning regime may be individually adjusted.
    Type: Application
    Filed: October 23, 2009
    Publication date: June 3, 2010
    Inventors: Robert Seidel, Markus Nopper, Axel Preusse
  • Publication number: 20100052110
    Abstract: In a semiconductor device, a through hole via extending through the substrate of the device may be formed on the basis of a carbon-containing material, thereby providing excellent compatibility with high temperature processes, while also providing superior electrical performance compared to doped semiconductor materials and the like. Thus, in some illustrative embodiments, the through hole vias may be formed prior to any process steps used for forming critical circuit elements, thereby substantially avoiding any interference of the through hole via structure with a device level of the corresponding semiconductor device. Consequently, highly efficient three-dimensional integration schemes may be realized.
    Type: Application
    Filed: July 17, 2009
    Publication date: March 4, 2010
    Inventors: Robert Seidel, Frank Feustel, Ralf Richter
  • Publication number: 20100052175
    Abstract: By recessing metal lines and/or the dielectric material of a metallization layer of sophisticated semiconductor devices, the time to dielectric breakdown may be increased due to reducing electrical fields and diffusion paths at the top of the metal lines.
    Type: Application
    Filed: July 22, 2009
    Publication date: March 4, 2010
    Inventors: Robert Seidel, Ralf Richter
  • Patent number: 7646045
    Abstract: A nanoelement field effect transistor includes a nanotube disposed on the substrate. A first source/drain region is coupled to a first end portion of the nanoelement and a second source/drain region is coupled to a second end portion of the nanoelement. A recess in a surface region of the substrate is arranged in such a manner that a region of the nanoelement arranged between the first and second end portions is taken out over the entire periphery of the nanoelement. A gate-insulating structure covers the periphery of the nanoelement and a gate structure covers the periphery of the gate-insulating structure.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: January 12, 2010
    Assignee: Qimonda AG
    Inventors: Franz Kreupl, Robert Seidel
  • Publication number: 20090275200
    Abstract: In a dual stress liner approach, the surface conditions after the patterning of a first stress-inducing layer may be enhanced by appropriately designing an etch sequence for substantially completely removing an etch stop material, which may be used for the patterning of the second stress-inducing dielectric material, while, in other cases, the etch stop material may be selectively formed after the patterning of the first stress-inducing dielectric material. Hence, the dual stress liner approach may be efficiently applied to semiconductor devices of the 45 nm technology and beyond.
    Type: Application
    Filed: February 17, 2009
    Publication date: November 5, 2009
    Inventors: Ralf Richter, Heike Salz, Robert Seidel
  • Publication number: 20090243109
    Abstract: A conductive cap material for a copper region may be provided with enhanced etch resistivity by taking into consideration the standard electrode potential of one or more of the species contained therein. For example, instead of a conventionally used CoWP alloy, a modified alloy may be used, by substituting the cobalt species by a metallic species having a less negative standard electrode potential, such as nickel. Consequently, device performance may be enhanced, while at the same time the overall process complexity may be reduced.
    Type: Application
    Filed: January 19, 2009
    Publication date: October 1, 2009
    Inventors: Markus Nopper, Axel Preusse, Robert Seidel
  • Publication number: 20090213830
    Abstract: A communication system is disclosed. In one embodiment, the communication system includes a communication device set up to execute a process, configured to put itself into an activated state or into a deactivated state at alternate times, receive time information in a first operating state of the activated state, take the received time information as a basis for ascertaining the later time at which useful information is transmitted to the communication device, receive the useful information at the later time in a second operating state of the activated state. Individual components of the communication device are able to be put into an activated state or into a deactivated state independently of one another.
    Type: Application
    Filed: October 11, 2005
    Publication date: August 27, 2009
    Applicant: QIMONDA AG
    Inventors: Georg Duesberg, Franz Kreupl, Robert Seidel, Gernot Steinlesberger
  • Publication number: 20090181537
    Abstract: A method of forming a semiconductor structure comprises providing a substrate comprising a layer of a first material. A protection layer is formed over the layer of first material. At least one opening is formed in the layer of first material and the protection layer. A layer of a second material is formed over the layer of first material and the protection layer to fill the opening with the second material. A planarization process is performed to remove portions of the layer of second material outside the opening. At least a portion of the protection layer is not removed during the planarization process. An etching process is performed to remove the portions of the protection layer which were not removed during the planarization process.
    Type: Application
    Filed: March 26, 2009
    Publication date: July 16, 2009
    Inventors: ROBERT SEIDEL, Ralf Richter, Frank Feustel
  • Publication number: 20090108466
    Abstract: Interlayer connections, i.e., vertical connections, may be formed on the basis of a hard mask material, which may be positioned below, within or above an interlayer dielectric material, wherein one lateral dimension is defined by a trench mask, thereby obtaining a desired interlayer connection in a common patterning process. Furthermore, the thickness of at least certain portions of the metal lines may be adjusted with a high degree of flexibility, thereby providing the possibility of significantly reducing the overall resistivity of metal lines in metal levels, in which device performance may significantly depend on resistivity rather than parasitic capacitance.
    Type: Application
    Filed: April 16, 2008
    Publication date: April 30, 2009
    Inventors: Ralf Richter, Robert Seidel, Juergen Boemmels, Thomas Foltyn