Patents by Inventor Roger A. Quon

Roger A. Quon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10629428
    Abstract: The present disclosure generally relates to semiconductor structures and, more particularly, to metal insulator metal capacitor devices and methods of manufacture. The method includes: depositing a bottom plate; depositing a dielectric film over the bottom plate; exposing the dielectric film to a gas; curing the dielectric film; and depositing a top plate over the dielectric film.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: April 21, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Shariq Siddiqui, Han You, Xunyuan Zhang, Rohit Galatage, Roger A. Quon, Christopher J. Penny
  • Publication number: 20200111699
    Abstract: A method for back end of line (BEOL) integration for one or more interconnects includes forming one or more interconnects by depositing conductive material on a diffusion barrier layer in respective ones of one or more trenches formed within an interlevel dielectric, forming one or more cap layers on respective ones of the one or more interconnects, and selectively etching the diffusion barrier relative to the one or more cap layers to remove portions of the diffusion barrier layer along the interlevel dielectric.
    Type: Application
    Filed: October 4, 2018
    Publication date: April 9, 2020
    Inventors: Cornelius B. Peethala, Raghuveer R. Patlolla, Chih-Chao Yang, Roger A. Quon
  • Patent number: 10615116
    Abstract: A conductive interface includes a first conductor having a recessed area in least one surface. A dielectric layer has a trench positioned over the first conductor. A nitridized layer is formed on a top surface of the first conductor around the recessed area, to a depth on the first conductor that is shallower than a depth of the recessed area. A second conductor is formed in the trench and the recessed area to form a conductive contact with the first conductor.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: April 7, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lawrence A. Clevenger, Roger A. Quon, Terry A. Spooner, Wei Wang, Chih-Chao Yang
  • Publication number: 20200088713
    Abstract: Methods are provided for manufacturing well-controlled, solid-state nanopores in close proximity and arrays thereof. In one embodiment, a plurality of wells and one or more channels are formed in a substrate. Each of the wells is adjacent a channel. A portion of a sidewall of each well is exposed. The portion of exposed sidewall is nearest to the adjacent channel. The portion of the exposed sidewall of each well is laterally etched towards the adjacent channel. A nanopore is formed connecting the wells to an adjacent channel.
    Type: Application
    Filed: July 19, 2019
    Publication date: March 19, 2020
    Inventors: William J. DURAND, Joseph R. JOHNSON, Roger QUON
  • Publication number: 20200075336
    Abstract: A method of forming a structure for etch masking that includes forming first dielectric spacers on sidewalls of a plurality of mandrel structures and forming non-mandrel structures in space between adjacent first dielectric spacers. Second dielectric spacers are formed on sidewalls of an etch mask having a window that exposes a connecting portion of a centralized first dielectric spacer. The connecting portion of the centralized first dielectric spacer is removed. The mandrel structures and non-mandrel structures are removed selectively to the first dielectric spacers to provide an etch mask. The connecting portion removed from the centralized first dielectric spacer provides an opening connecting a first trench corresponding to the mandrel structures and a second trench corresponding to the non-mandrel structures.
    Type: Application
    Filed: November 6, 2019
    Publication date: March 5, 2020
    Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Nelson M. Felix, Sivananda K. Kanakasabapathy, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
  • Patent number: 10546774
    Abstract: An interconnect structure having a pitch of less than 40 nanometers and a self-aligned quadruple patterning process for forming the interconnect structure includes three types of lines: a ? line defined by a patterned bottom mandrel formed in the self-aligned quadruple patterning process; a ? line defined by location underneath a top mandrel formed in the self-aligned quadruple patterning process; and an ? line defined by elimination located underneath neither the top mandrel or the bottom mandrel formed in the self-aligned quadruple patterning process. The interconnect structure further includes multi-track jogs selected from a group consisting of a ??? jog; a ??? jog; and ??? jog; a ??? jog, and combinations thereof. The first and third positions refer to the uncut line and the second position refers to the cut line in the self-aligned quadruple patterning process.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: January 28, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Sivananda K. Kanakasabapathy, Yann A. M. Mignot, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
  • Patent number: 10529621
    Abstract: Tooling apparatus and methods are provided to fabricate semiconductor devices in which controlled thermal annealing techniques are utilized to modulate microstructures of metallic interconnect structures. For example, an apparatus includes a single platform semiconductor processing chamber having first and second sub-chambers. The first sub-chamber is configured to receive a semiconductor substrate comprising a metallization layer formed on a dielectric layer, wherein a portion of the metallization layer is disposed within an opening etched in the dielectric layer, and to form a stress control layer on the metallization layer. The second sub-chamber comprises a programmable hot plate which is configured to perform a thermal anneal process to modulate a microstructure of the metallization layer while the stress control layer is disposed on the metallization layer, and without an air break between the process modules of forming the stress control layer and performing the thermal anneal process.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: January 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Quon, Michael Rizzolo, Chih-Chao Yang
  • Patent number: 10529569
    Abstract: A method of forming a structure for etch masking that includes forming first dielectric spacers on sidewalls of a plurality of mandrel structures and forming non-mandrel structures in space between adjacent first dielectric spacers. Second dielectric spacers are formed on sidewalls of an etch mask having a window that exposes a connecting portion of a centralized first dielectric spacer. The connecting portion of the centralized first dielectric spacer is removed. The mandrel structures and non-mandrel structures are removed selectively to the first dielectric spacers to provide an etch mask. The connecting portion removed from the centralized first dielectric spacer provides an opening connecting a first trench corresponding to the mandrel structures and a second trench corresponding to the non-mandrel structures.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: January 7, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Nelson M. Felix, Sivananda K. Kanakasabapathy, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
  • Publication number: 20190393082
    Abstract: An interconnect structure having a pitch of less than 40 nanometers and a self-aligned quadruple patterning process for forming the interconnect structure includes three types of lines: a ? line defined by a patterned bottom mandrel formed in the self-aligned quadruple patterning process; a ? line defined by location underneath a top mandrel formed in the self-aligned quadruple patterning process; and an ? line defined by elimination located underneath neither the top mandrel or the bottom mandrel formed in the self-aligned quadruple patterning process. The interconnect structure further includes multi-track jogs selected from a group consisting of a ??? jog; a ??? jog; an ??? jog; a ??? jog, and combinations thereof. The first and third positions refer to the uncut line and the second position refers to the cut line in the self-aligned quadruple patterning process.
    Type: Application
    Filed: August 28, 2019
    Publication date: December 26, 2019
    Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Sivananda K. Kanakasabapathy, Yann A.M. Mignot, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
  • Publication number: 20190371656
    Abstract: A nitridation treatment method is provided. The nitridation treatment method includes executing a nitridation treatment with respect to a hydrophobic surface defining an interconnect trench to convert the hydrophobic surface to a hydrophilic surface. The nitridation treatment method further includes depositing a seed layer including a conductive material and manganese on the hydrophilic surface. The nitridation treatment method also includes thermally driving all the manganese out of the seed layer to form a diffusion barrier including manganese at the hydrophilic surface. In addition, the nitridation treatment method includes filling remaining space in the interconnect trench with the conductive material to form an interconnect.
    Type: Application
    Filed: June 1, 2018
    Publication date: December 5, 2019
    Inventors: Hsueh-Chung Chen, Roger A. Quon, Chih-Chao Yang
  • Publication number: 20190279860
    Abstract: The present disclosure generally relates to semiconductor structures and, more particularly, to metal insulator metal capacitor devices and methods of manufacture. The method includes: depositing a bottom plate; depositing a dielectric film over the bottom plate; exposing the dielectric film to a gas; curing the dielectric film; and depositing a top plate over the dielectric film.
    Type: Application
    Filed: March 9, 2018
    Publication date: September 12, 2019
    Inventors: Shariq SIDDIQUI, Han YOU, Xunyuan ZHANG, Rohit GALATAGE, Roger A. QUON, Christopher J. PENNY
  • Patent number: 10395985
    Abstract: A method for forming conductive lines comprises forming a hardmask on an insulator layer, a planarizing layer on the hardmask, and a hardmask on the planarizing layer, removing exposed portions of a layer of sacrificial mandrel material to form first and second sacrificial mandrels on the hardmask, and depositing a layer of spacer material in the gap, and over exposed portions of the first and second sacrificial mandrels and the hardmask. Portions of the layer of spacer material are removed to expose the first and second sacrificial mandrels. A filler material is deposited between the first and second sacrificial mandrels. A portion of the filler material is removed to expose the first and second sacrificial mandrels. Portions of the layer of spacer material are removed to expose portions of the hardmask. A trench is formed in the insulator layer, and the trench is filled with a conductive material.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: August 27, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Sivananda K. Kanakasabapathy, Yann A. M. Mignot, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
  • Patent number: 10373909
    Abstract: Semiconductor structures including copper interconnect structures and methods include selective surface modification of copper by providing a CuxTiyNz alloy in the surface. The methods generally include forming a titanium nitride layer on an exposed copper surface followed by annealing to form the CuxTiyNz, alloy in the exposed copper surface. Subsequently, the titanium layer is removed by a selective wet etching.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: August 6, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Raghuveer R. Patlolla, Cornelius Brown Peethala, Roger A. Quon, Chih-Chao Yang
  • Patent number: 10361153
    Abstract: Methods of forming vias include nitridizing exposed surfaces of a first layer and an exposed surface of a conductor underlying the first layer to form a layer of nitridation at said exposed surfaces. Material from the layer of nitridation at the exposed surface of the underlying conductor is etched away. The exposed surface of the underlying conductor is etched away to form a recessed area in the underlying conductor after etching away material from the layer of nitridation. A conductive via that forms a conductive contact with the underlying conductor is formed.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: July 23, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lawrence A. Clevenger, Roger A. Quon, Terry A. Spooner, Wei Wang, Chih-Chao Yang
  • Publication number: 20190172747
    Abstract: Tooling apparatus and methods are provided to fabricate semiconductor devices in which controlled thermal annealing techniques are utilized to modulate microstructures of metallic interconnect structures. For example, an apparatus includes a single platform semiconductor processing chamber having first and second sub-chambers. The first sub-chamber is configured to receive a semiconductor substrate comprising a metallization layer formed on a dielectric layer, wherein a portion of the metallization layer is disposed within an opening etched in the dielectric layer, and to form a stress control layer on the metallization layer. The second sub-chamber comprises a programmable hot plate which is configured to perform a thermal anneal process to modulate a microstructure of the metallization layer while the stress control layer is disposed on the metallization layer, and without an air break between the process modules of forming the stress control layer and performing the thermal anneal process.
    Type: Application
    Filed: February 5, 2019
    Publication date: June 6, 2019
    Inventors: Roger A. Quon, Michael Rizzolo, Chih-Chao Yang
  • Patent number: 10256185
    Abstract: A method for fabricating a semiconductor structure includes the following steps. A substrate including a dielectric material is formed. A surface of the substrate is molecularly modified to convert the surface of the substrate to a nitrogen-enriched surface. A metal layer is deposited on the molecularly modified surface of the substrate interacting with the molecularly modified surface to form a nitridized metal layer.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: April 9, 2019
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Roger A. Quon, Hosadurga K. Shobha, Terry A. Spooner, Wei Wang, Chih-Chao Yang
  • Patent number: 10249532
    Abstract: Tooling apparatus and methods are provided to fabricate semiconductor devices in which controlled thermal annealing techniques are utilized to modulate microstructures of metallic interconnect structures. For example, an apparatus includes a single platform semiconductor processing chamber having first and second sub-chambers. The first sub-chamber is configured to receive a semiconductor substrate comprising a metallization layer formed on a dielectric layer, wherein a portion of the metallization layer is disposed within an opening etched in the dielectric layer, and to form a stress control layer on the metallization layer. The second sub-chamber comprises a programmable hot plate which is configured to perform a thermal anneal process to modulate a microstructure of the metallization layer while the stress control layer is disposed on the metallization layer, and without an air break between the process modules of forming the stress control layer and performing the thermal anneal process.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: April 2, 2019
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Quon, Michael Rizzolo, Chih-Chao Yang
  • Publication number: 20180350599
    Abstract: A method of forming a structure for etch masking that includes forming first dielectric spacers on sidewalls of a plurality of mandrel structures and forming non-mandrel structures in space between adjacent first dielectric spacers. Second dielectric spacers are formed on sidewalls of an etch mask having a window that exposes a connecting portion of a centralized first dielectric spacer. The connecting portion of the centralized first dielectric spacer is removed. The mandrel structures and non-mandrel structures are removed selectively to the first dielectric spacers to provide an etch mask. The connecting portion removed from the centralized first dielectric spacer provides an opening connecting a first trench corresponding to the mandrel structures and a second trench corresponding to the non-mandrel structures.
    Type: Application
    Filed: August 8, 2018
    Publication date: December 6, 2018
    Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Nelson M. Felix, Sivananda K. Kanakasabapathy, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
  • Patent number: 10128147
    Abstract: Semiconductor structures include a patterned interlayer dielectric overlaying a semiconductor substrate. The interlayer dielectric includes a first dielectric layer and at least one additional dielectric layer disposed on the first dielectric layer, wherein the patterned interlayer dielectric comprises at least one opening extending through the interlayer dielectric to the semiconductor substrate. Chemically enriched regions including ions of Si, P, B, N, O and combinations thereof are disposed in surfaces of the first dielectric layer and the at least one dielectric layer defined by the at least one opening. Also described are methods of for forming an interconnect structure in a semiconductor structure.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: November 13, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lawrence A. Clevenger, Roger A. Quon, Terry A. Spooner, Wei Wang, Chih-Chao Yang
  • Patent number: 10121661
    Abstract: A method of forming a structure for etch masking that includes forming first dielectric spacers on sidewalls of a plurality of mandrel structures and forming non-mandrel structures in space between adjacent first dielectric spacers. Second dielectric spacers are formed on sidewalls of an etch mask having a window that exposes a connecting portion of a centralized first dielectric spacer. The connecting portion of the centralized first dielectric spacer is removed. The mandrel structures and non-mandrel structures are removed selectively to the first dielectric spacers to provide an etch mask. The connecting portion removed from the centralized first dielectric spacer provides an opening connecting a first trench corresponding to the mandrel structures and a second trench corresponding to the non-mandrel structures.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: November 6, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Nelson M. Felix, Sivananda K. Kanakasabapathy, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier