Patents by Inventor Ronald Weimer

Ronald Weimer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7081656
    Abstract: The invention includes methods of forming circuit devices. A metal-containing material comprising a thickness of no more than 20 ? (or alternatively comprising a thickness resulting from no more than 70 ALD cycles) is formed between conductively-doped silicon and a dielectric layer. The conductively-doped silicon can be n-type silicon and the dielectric layer can be a high-k dielectric material. The metal-containing material can be formed directly on the dielectric layer, and the conductively-doped silicon can be formed directly on the metal-containing material. The circuit device can be a capacitor construction or a transistor construction. If the circuit device is a transistor construction, such can be incorporated into a CMOS assembly. Various devices of the present invention can be incorporated into memory constructions, and can be incorporated into electronic systems.
    Type: Grant
    Filed: January 13, 2004
    Date of Patent: July 25, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Denise M. Eppich, Ronald A. Weimer
  • Publication number: 20060141698
    Abstract: Methods for forming dielectric layers over polysilicon substrates, useful in the construction of capacitors and other semiconductor circuit components are provided. A self-limiting nitric oxide (NO) anneal of a polysilicon layer such as an HSG polysilicon capacitor electrode, at less than 800° C., is utilized to grow a thin oxide (oxynitride) layer of about 40 angstroms or less over the polysilicon layer. The NO anneal provides a nitrogen layer at the polysilicon-oxide interface that limits further oxidation of the polysilicon layer and growth of the oxide layer. The oxide layer is exposed to a nitrogen-containing gas to nitridize the surface of the oxide layer and reduce the effective dielectric constant of the oxide layer. The process is particularly useful in forming high K dielectric insulating layers such as tantalum pentoxide over polysilicon.
    Type: Application
    Filed: February 21, 2006
    Publication date: June 29, 2006
    Applicant: Micron Technology, Inc.
    Inventor: Ronald Weimer
  • Publication number: 20060138594
    Abstract: Methods for forming dielectric layers over polysilicon substrates, useful in the construction of capacitors and other semiconductor circuit components are provided. A self-limiting nitric oxide (NO) anneal of a polysilicon layer such as an HSG polysilicon capacitor electrode, at less than 800° C., is utilized to grow a thin oxide (oxynitride) layer of about 40 angstroms or less over the polysilicon layer. The NO anneal provides a nitrogen layer at the polysilicon-oxide interface that limits further oxidation of the polysilicon layer and growth of the oxide layer. The oxide layer is exposed to a nitrogen-containing gas to nitridize the surface of the oxide layer and reduce the effective dielectric constant of the oxide layer. The process is particularly useful in forming high K dielectric insulating layers such as tantalum pentoxide over polysilicon.
    Type: Application
    Filed: February 21, 2006
    Publication date: June 29, 2006
    Applicant: Micron Technology, Inc.
    Inventor: Ronald Weimer
  • Patent number: 7064052
    Abstract: A method of fabricating a semiconductor device includes depositing a dielectric film and subjecting the dielectric film to a wet oxidation in a rapid thermal process chamber. The technique can be used, for example, in the formation of various elements in an integrated circuit, including gate dielectric films as well as capacitive elements. The tight temperature control provided by the RTP process allows the wet oxidation to be performed quickly so that the oxidizing species does not diffuse significantly through the dielectric film and diffuse into an underlying layer. In the case of capacitive elements, the technique also can help reduce the leakage current of the dielectric film without significantly reducing its capacitance.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: June 20, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Ronald A. Weimer, Scott J. DeBoer, Dan Gealy, Husam N. Al-Shareef
  • Publication number: 20060121689
    Abstract: The present disclosure provides methods and apparatus useful in depositing materials on batches of microfeature workpieces. One implementation provides a method in which a quantity of a first precursor gas is introduced to an enclosure at a first enclosure pressure. The pressure within the enclosure is reduced toga second enclosure pressure while introducing a purge gas at a first flow rate. The second enclosure pressure may approach or be equal to a steady-state base pressure of the processing system at the first flow rate. After reducing the pressure, the purge gas flow may be increased to a second flow rate and the enclosure pressure may be increased to a third enclosure pressure. Thereafter, a flow of a second precursor gas may be introduced with a pressure within the enclosure at a fourth enclosure pressure; the third enclosure pressure is desirably within about 10 percent of the fourth enclosure pressure.
    Type: Application
    Filed: January 6, 2006
    Publication date: June 8, 2006
    Inventors: Cem Basceri, Trung Doan, Ronald Weimer, Kevin Beaman, Lyle Breiner, Lingyi Zheng, Er-Xuan Ping, Demetrius Sarigiannis, David Kubista
  • Patent number: 7056806
    Abstract: The present disclosure provides methods and apparatus useful in depositing materials on batches of microfeature workpieces. One implementation provides a method in which a quantity of a first precursor gas is introduced to an enclosure at a first enclosure pressure. The pressure within the enclosure is reduced to a second enclosure pressure while introducing a purge gas at a first flow rate. The second enclosure pressure may approach or be equal to a steady-state base pressure of the processing system at the first flow rate. After reducing the pressure, the purge gas flow may be increased to a second flow rate and the enclosure pressure may be increased to a third enclosure pressure. Thereafter, a flow of a second precursor gas may be introduced with a pressure within the enclosure at a fourth enclosure pressure; the third enclosure pressure is desirably within about 10 percent of the fourth enclosure pressure.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: June 6, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Trung T. Doan, Ronald A. Weimer, Kevin L. Beaman, Lyle D. Breiner, Lingyi A. Zheng, Er-Xuan Ping, Demetrius Sarigiannis, David J. Kubista
  • Publication number: 20060115957
    Abstract: The present disclosure provides methods and apparatus useful in depositing materials on batches of microfeature workpieces. One implementation provides a method in which a quantity of a first precursor gas is introduced to an enclosure at a first enclosure pressure. The pressure within the enclosure is reduced to a second enclosure pressure while introducing a purge gas at a first flow rate. The second enclosure pressure may approach or be equal to a steady-state base pressure of the processing system at the first flow rate. After reducing the pressure, the purge gas flow may be increased to a second flow rate and the enclosure pressure may be increased to a third enclosure pressure. Thereafter, a flow of a second precursor gas may be introduced with a pressure within the enclosure at a fourth enclosure pressure; the third enclosure pressure is desirably within about 10 percent of the fourth enclosure pressure.
    Type: Application
    Filed: January 6, 2006
    Publication date: June 1, 2006
    Inventors: Cem Basceri, Trung Doan, Ronald Weimer, Kevin Beaman, Lyle Breiner, Lingyi Zheng, Er-Xuan Ping, Demetrius Sarigiannis, David Kubista
  • Patent number: 7022623
    Abstract: A method of fabricating a semiconductor device includes depositing a dielectric film and subjecting the dielectric film to a wet oxidation in a rapid thermal process chamber. The technique can be used, for example, in the formation of various elements in an integrated circuit, including gate dielectric films as well as capacitive elements. The tight temperature control provided by the RTP process allows the wet oxidation to be performed quickly so that the oxidizing species does not diffuse significantly through the dielectric film and diffuse into an underlying layer. In the case of capacitive elements, the technique also can help reduce the leakage current of the dielectric film without significantly reducing its capacitance.
    Type: Grant
    Filed: April 22, 1999
    Date of Patent: April 4, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Ronald A. Weimer, Scott J. DeBoer, Dan Gealy, Husam N. Al-Shareef
  • Patent number: 7019351
    Abstract: The invention includes methods of forming circuit devices. A metal-containing material comprising a thickness of no more than 20 ? (or alternatively comprising a thickness resulting from no more than 70 ALD cycles) is formed between conductively-doped silicon and a dielectric layer. The conductively-doped silicon can be n-type silicon and the dielectric layer can be a high-k dielectric material. The metal-containing material can be formed directly on the dielectric layer, and the conductively-doped silicon can be formed directly on the metal-containing material. The circuit device can be a capacitor construction or a transistor construction. If the circuit device is a transistor construction, such can be incorporated into a CMOS assembly. Various devices of the present invention can be incorporated into memory constructions, and can be incorporated into electronic systems.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: March 28, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Denise M. Eppich, Ronald A. Weimer
  • Patent number: 6998675
    Abstract: The present invention provides a method for improving the erase speed and the uniformity of erase characteristics in erasable programmable read-only memories. This result is achieved by forming polycrystalline floating gate layers with optimized grain size on a tunnel dielectric layer. Nucleation sites are formed by exposing the tunnel dielectric layer to a first set of conditions including a first temperature and a first atmosphere selected to optimize nucleation site size and distribution density across the tunnel dielectric layer. A polycrystalline floating gate layer is formed on top of the nucleation sites by exposing the nucleation sites to a second set of conditions including a second temperature and a second atmosphere selected to optimize polycrystalline grain size and distribution density across the polycrystalline floating gate layer.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: February 14, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Ronald A. Weimer
  • Publication number: 20060030096
    Abstract: Complementary transistors and methods of forming the complementary transistors on a semiconductor assembly are described. The transistors are formed with an optional interfacial oxide, such as SiO2 or oxy-nitride, to overlay a semiconductor substrate which will be conductively doped for PMOS and NMOS regions. Then a dielectric possessing a high dielectric constant of least seven or greater (also referred to as a high-k dielectric) is deposited on the interfacial oxide. The high-k dielectric is covered with a thin monolayer of metal oxide (i.e., aluminum oxide, Al2O3) that is removed from the NMOS regions, but remains in the PMOS regions. The resulting NMOS transistor diffusion regions contain predominately metal to silicon bonds that create predominately Fermi level pinning near the valence band while the resulting PMOS transistor diffusion regions contain metal to silicon bonds that create predominately Fermi level pinning near the conduction band.
    Type: Application
    Filed: August 6, 2004
    Publication date: February 9, 2006
    Inventor: Ronald Weimer
  • Publication number: 20060011969
    Abstract: The present invention provides a flash memory integrated circuit and a method for fabricating the same. The method includes etching a gate stack that includes an initial oxide layer directly in contact with a silicon layer, defining an oxide-silicon interface therebetween. By exposing the etched gate stack to elevated temperatures and a dilute steam ambient, additional oxide material is formed substantially uniformly along the oxide-silicon interface. Polysilicon grain boundaries at the interface are thereby passivated after etching. In the preferred embodiment, the interface is formed between a tunnel oxide and a floating gate, and passivating the grain boundaries reduces erase variability due to enhanced charge transfer along grain boundaries. At the same time, oxide in an upper storage dielectric layer (oxide-nitride-oxide or ONO) is enhanced in the dilute steam oxidation.
    Type: Application
    Filed: August 17, 2005
    Publication date: January 19, 2006
    Inventors: Ronald Weimer, Don Powell, John Moore, Jeff McKee
  • Publication number: 20060009028
    Abstract: The invention pertains to films comprising silicon, oxygen and carbon and the use of the films in integrated circuit technology, such as capacitor constructions, DRAM constructions, semiconductive material assemblies, etching processes, and methods for forming capacitors, DRAMs and semiconductive material assemblies. One particular disclosed film is an anti-reflective coating, and a method of formation thereof.
    Type: Application
    Filed: August 31, 2005
    Publication date: January 12, 2006
    Inventors: Ronald Weimer, John Moore
  • Publication number: 20050275044
    Abstract: Systems and devices are disclosed utilizing a silicon-containing barrier layer. A semiconductor device is disclosed and includes a substrate, a gate oxide, a silicon-containing barrier layer and a gate electrode. The gate oxide is formed over the substrate. The silicon-containing barrier layer is formed over the gate oxide by causing silicon atoms of a precursor layer react with a reactive agent. The gate electrode is formed over the silicon-containing barrier layer.
    Type: Application
    Filed: August 9, 2005
    Publication date: December 15, 2005
    Inventors: Don Powell, Garry Mercaldi, Ronald Weimer
  • Patent number: 6972223
    Abstract: A composite barrier layer formed between a glass film and active regions of a memory device is disclosed. The composite barrier layer comprises an oxide layer formed by atomic deposition process and an insulating layer, for example a nitride barrier layer, formed over the oxide layer. The composite barrier layer eliminates the diffusion of impurity atoms from the glass film into the active regions of the device.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: December 6, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Ronald A. Weimer, Er-Xuan Ping
  • Patent number: 6963101
    Abstract: The invention pertains to films comprising silicon, oxygen and carbon and the use of the films in integrated circuit technology, such as capacitor constructions, DRAM constructions, semiconductive material assemblies, etching processes, and methods for forming capacitors, DRAMs and semiconductive material assemblies.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: November 8, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Ronald A. Weimer, John T. Moore
  • Publication number: 20050217575
    Abstract: Ampoules for producing a reaction gas and systems for depositing materials onto microfeature workpieces in reaction chambers are disclosed herein. In one embodiment, an ampoule includes a vessel having an interior volume configured to receive a precursor with a headspace above the precursor. The ampoule further includes a carrier gas inlet for flowing carrier gas into the vessel, a conduit having an opening in the precursor and an outlet in the headspace, and a means for flowing precursor through the conduit and into the headspace to increase the surface area of the precursor exposed to the carrier gas.
    Type: Application
    Filed: March 31, 2004
    Publication date: October 6, 2005
    Inventors: Dan Gealy, Ronald Weimer
  • Patent number: 6949789
    Abstract: The present invention provides a flash memory integrated circuit and a method for fabricating the same. The method includes etching a gate stack that includes an initial oxide layer directly in contact with a silicon layer, defining an oxide-silicon interface therebetween. By exposing the etched gate stack to elevated temperatures and a dilute steam ambient, additional oxide material is formed substantially uniformly along the oxide-silicon interface. Polysilicon grain boundaries at the interface are thereby passivated after etching. In the preferred embodiment, the interface is formed between a tunnel oxide and a floating gate, and passivating the grain boundaries reduces erase variability due to enhanced charge transfer along grain boundaries. At the same time, oxide in an upper storage dielectric layer (oxide-nitride-oxide or ONO) is enhanced in the dilute steam oxidation.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: September 27, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Ronald A. Weimer, Don C. Powell, John T. Moore, Jeff A. McKee
  • Patent number: 6949477
    Abstract: A method of fabricating a semiconductor device includes depositing a dielectric film and subjecting the dielectric film to a wet oxidation in a rapid thermal process chamber. The technique can be used, for example, in the formation of various elements in an integrated circuit, including gate dielectric films as well as capacitive elements. The tight temperature control provided by the RTP process allows the wet oxidation to be performed quickly so that the oxidizing species does not diffuse significantly through the dielectric film and diffuse into an underlying layer. In the case of capacitive elements, the technique also can help reduce the leakage current of the dielectric film without significantly reducing its capacitance.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: September 27, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Ronald A. Weimer, Scott J. DeBoer, Dan Gealy, Husam N. Al-Shareef
  • Patent number: 6924197
    Abstract: The present invention provides a flash memory integrated circuit and a method of fabricating the same. A tunnel dielectric in an erasable programmable read only memory (EPROM) device is nitrided with a hydrogen-bearing compound, particularly ammonia. Hydrogen is thus incorporated into the tunnel dielectric, along with nitrogen. The gate stack is etched and completed, including protective sidewall spacers and dielectric cap, and the stack lined with a barrier to hydroxyl and hydrogen species. Though the liner advantageously reduces impurity diffusion through to the tunnel dielectric and substrate interface, it also reduces hydrogen diffusion in any subsequent hydrogen anneal. Hydrogen is provided to the tunnel dielectric, however, in the prior exposure to ammonia.
    Type: Grant
    Filed: March 3, 2003
    Date of Patent: August 2, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Ronald A. Weimer