Patents by Inventor Ronald Weimer

Ronald Weimer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050164466
    Abstract: The present disclosure provides small scale capacitors (e.g., DRAM capacitors) and methods of forming such capacitors. One exemplary implementation provides a method of fabricating a capacitor that includes sequentially forming a first electrode, a dielectric layer, and a second electrode. At least one of the electrodes may be formed by a) reacting two precursors to deposit a first conductive layer at a first deposition rate, and b) depositing a second conductive layer at a second, lower deposition rate by depositing a precursor layer of one precursor at least one monolayer thick and exposing that precursor layer to another precursor to form a nanolayer reaction product. The second conductive layer may be in contact with the dielectric layer and have a thickness of no greater than about 50?.
    Type: Application
    Filed: January 28, 2004
    Publication date: July 28, 2005
    Inventors: Lingyi Zheng, Trung Doan, Lyle Breiner, Er-Xuan Ping, Kevin Beaman, Ronald Weimer, Cem Basceri, David Kubista
  • Patent number: 6921937
    Abstract: The present invention provides a flash memory integrated circuit and a method of fabricating the same. A tunnel dielectric in an erasable programmable read only memory (EPROM) device is nitrided with a hydrogen-bearing compound, particularly ammonia. Hydrogen is thus incorporated into the tunnel dielectric, along with nitrogen. The gate stack is etched and completed, including protective sidewall spacers and dielectric cap, and the stack lined with a barrier to hydroxyl and hydrogen species. Though the liner advantageously reduces impurity diffusion through to the tunnel dielectric and substrate interface, it also reduces hydrogen diffusion in any subsequent hydrogen anneal. Hydrogen is provided to the tunnel dielectric, however, in the prior exposure to ammonia.
    Type: Grant
    Filed: March 3, 2003
    Date of Patent: July 26, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Ronald A. Weimer
  • Patent number: 6918965
    Abstract: A device for magnetically annealing magnetoresistive elements formed on wafers includes a heated chuck and a delivery mechanism for individually placing the wafers individually on the chuck one at a time. A coil is adjacent to the chuck and generates a magnetic field after the wafer is heated to a Néel temperature of an anti-ferromagnetic layer. A control system regulates the temperature of the heated chuck, the strength of the magnetic field, and a time period during which each chuck is heated to control the annealing process. The annealed elements are incorporated in the fabrication of magnetic memory devices.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: July 19, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Mark E. Tuttle, Ronald A. Weimer
  • Publication number: 20050133118
    Abstract: A device for magnetically annealing magnetoresistive elements formed on wafers includes a heated chuck and a delivery mechanism for individually placing the wafers individually on the chuck one at a time. A coil is adjacent to the chuck and generates a magnetic field after the wafer is heated to a Néel temperature of an anti-ferromagnetic layer. A control system regulates the temperature of the heated chuck, the strength of the magnetic field, and a time period during which each chuck is heated to control the annealing process. The annealed elements are incorporated in the fabrication of magnetic memory devices.
    Type: Application
    Filed: February 18, 2005
    Publication date: June 23, 2005
    Inventors: Mark Tuttle, Ronald Weimer
  • Patent number: 6908868
    Abstract: A method for passivating at least interfaces between structures formed from a conductive or semiconductive material and adjacent dielectric structures so as to reduce a concentration of dangling silicon bonds at these interfaces and to reduce or eliminate the occurrence of unwanted voltage changes across the dielectric structures. The method includes exposing at least the interfaces to at least hydrogen species and forming an encapsulant layer that substantially contains the hydrogen species in the presence of the interfaces. The encapsulant layer substantially prevents the hydrogen species from escaping therethrough as processes that require temperatures of at least about 400° C. or of at least about 600° C. are conducted. Once such high temperature processes have been completed, portions of the encapsulant layer may be removed. Methods and systems for passivating semiconductor device structures are also disclosed, as are semiconductor device structures passivated according to the disclosed methods.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: June 21, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Ronald A. Weimer, Fernando Gonzalez
  • Publication number: 20050126489
    Abstract: The present disclosure provides methods and systems for controlling temperature. The method has particular utility in connection with controlling temperature in a deposition process, e.g., in depositing a heat-reflective material via CVD. One exemplary embodiment provides a method that involves monitoring a first temperature outside the deposition chamber and a second temperature inside the deposition chamber. An internal temperature in the deposition chamber can be increased in accordance with a ramp profile by (a) comparing a control temperature to a target temperature, and (b) selectively delivering heat to the deposition chamber in response to a result of the comparison. The target temperature may be determined in accordance with the ramp profile, but the control temperature in one implementation alternates between the first temperature and the second temperature.
    Type: Application
    Filed: December 10, 2003
    Publication date: June 16, 2005
    Inventors: Kevin Beaman, Trung Doan, Lyle Breiner, Ronald Weimer, Er-Xuan Ping, David Kubista, Cem Basceri, Lingyi Zheng
  • Publication number: 20050101078
    Abstract: The invention includes methods of forming circuit devices. A metal-containing material comprising a thickness of no more than 20 ? (or alternatively comprising a thickness resulting from no more than 70 ALD cycles) is formed between conductively-doped silicon and a dielectric layer. The conductively-doped silicon can be n-type silicon and the dielectric layer can be a high-k dielectric material. The metal-containing material can be formed directly on the dielectric layer, and the conductively-doped silicon can be formed directly on the metal-containing material. The circuit device can be a capacitor construction or a transistor construction. If the circuit device is a transistor construction, such can be incorporated into a CMOS assembly. Various devices of the present invention can be incorporated into memory constructions, and can be incorporated into electronic systems.
    Type: Application
    Filed: December 3, 2004
    Publication date: May 12, 2005
    Inventors: Denise Eppich, Ronald Weimer
  • Publication number: 20050081786
    Abstract: Systems for depositing material onto workpieces in reaction chambers and methods for removing byproducts from reaction chambers are disclosed herein. In one embodiment, the system includes a gas phase reaction chamber, a first exhaust line coupled to the reaction chamber, first and second traps each in fluid communication with the first exhaust line, and a vacuum pump coupled to the first exhaust line to remove gases from the reaction chamber. The first and second traps are operable independently to individually and/or jointly collect byproducts from the reaction chamber. It is emphasized that this Abstract is provided to comply with the rules requiring an abstract. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: October 15, 2003
    Publication date: April 21, 2005
    Inventors: David Kubista, Trung Doan, Lyle Breiner, Ronald Weimer, Kevin Beaman, Er-Xuan Ping, Lingyi Zheng, Cem Basceri
  • Patent number: 6881636
    Abstract: The invention includes methods of forming deuterated silicon nitride-containing materials from at least one deuterated nitrogen compound in combination with one or more silicon-containing compounds that do not contain hydrogen isotopes. Suitable deuterated nitrogen compounds can comprise, for example, NH2D, NHD2 and ND3. Suitable silicon-containing compounds include, for example, SiCl4 and Si2Cl6. Deuterated silicon nitride-containing materials of the present invention can be incorporated into, for example, transistor devices. The transistor devices can be utilized in DRAM cells, which in turn can be utilized in electronic systems.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: April 19, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Ronald A. Weimer, Lyle D. Breiner
  • Patent number: 6882031
    Abstract: A passivation method includes disassociating ammonia so as to expose at least interfaces between silicon-containing and passivation structures to at least hydrogen species derived from the ammonia and forming an encapsulant layer that is positioned so as to substantially contain the hydrogen species in the presence of the interfaces. The hydrogen passivation reduces a concentration of dangling silicon bonds at the interfaces by as much as about two orders of magnitude or greater. The encapsulant layer, which may include silicon nitride, prevents hydrogen species from escaping therethrough as high temperature processes are subsequently conducted. Once high temperature processes have been completed, portions of the encapsulant layer may be removed, as needed, to provide access to features of the semiconductor device structure that underlie the encapsulant layer. Semiconductor device structures that have been passivated in such a manner are also disclosed.
    Type: Grant
    Filed: October 30, 2001
    Date of Patent: April 19, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Ronald A. Weimer, Fernando Gonzalez
  • Publication number: 20050059261
    Abstract: The present disclosure provides methods and apparatus useful in depositing materials on batches of microfeature workpieces. One implementation provides a method in which a quantity of a first precursor gas is introduced to an enclosure at a first enclosure pressure. The pressure within the enclosure is reduced to a second enclosure pressure while introducing a purge gas at a first flow rate. The second enclosure pressure may approach or be equal to a steady-state base pressure of the processing system at the first flow rate. After reducing the pressure, the purge gas flow may be increased to a second flow rate and the enclosure pressure may be increased to a third enclosure pressure. Thereafter, a flow of a second precursor gas may be introduced with a pressure within the enclosure at a fourth enclosure pressure; the third enclosure pressure is desirably within about 10 percent of the fourth enclosure pressure.
    Type: Application
    Filed: September 17, 2003
    Publication date: March 17, 2005
    Inventors: Cem Basceri, Trung Doan, Ronald Weimer, Kevin Beaman, Lyle Breiner, Lingyi Zheng, Er-Xuan Ping, Demetrius Sarigiannis, David Kubista
  • Publication number: 20050048793
    Abstract: A method of fabricating a semiconductor device includes depositing a dielectric film and subjecting the dielectric film to a wet oxidation in a rapid thermal process chamber. The technique can be used, for example, in the formation of various elements in an integrated circuit, including gate dielectric films as well as capacitive elements. The tight temperature control provided by the RTP process allows the wet oxidation to be performed quickly so that the oxidizing species does not diffuse significantly through the dielectric film and diffuse into an underlying layer. In the case of capacitive elements, the technique also can help reduce the leakage current of the dielectric film without significantly reducing its capacitance.
    Type: Application
    Filed: August 14, 2003
    Publication date: March 3, 2005
    Inventors: Ronald Weimer, Scott DeBoer, Dan Gealy, Husam Al-Shareef
  • Publication number: 20050045102
    Abstract: The present disclosure suggests several systems and methods for batch processing of microfeature workpieces, e.g., semiconductor wafers or the like. One exemplary implementation provides a method of depositing a reaction product on each of a batch of workpieces positioned in a process chamber in a spaced-apart relationship. A first gas may be delivered to an elongate first delivery conduit that includes a plurality of outlets spaced along a length of the conduit. A first gas flow may be directed by the outlets to flow into at least one of the process spaces between adjacent workpieces along a first vector that is transverse to the direction in which the workpieces are spaced. A second gas may be delivered to an elongate second delivery conduit that also has outlets spaced along its length. A second gas flow of the second gas may be directed by the outlets to flow into the process spaces along a second vector that is transverse to the first direction.
    Type: Application
    Filed: August 28, 2003
    Publication date: March 3, 2005
    Inventors: Lingyi Zheng, Trung Doan, Lyle Breiner, Er-Xuan Ping, Kevin Beaman, Ronald Weimer, David Kubista, Cem Basceri
  • Publication number: 20050039680
    Abstract: The present disclosure provides methods and apparatus that may be used to process microfeature workpieces, e.g., semiconductor wafers. Some aspects have particular utility in depositing TiN in a batch process. One implementation involves pretreating a surface of a process chamber by contemporaneously introducing first and second pretreatment precursors (e.g., TiCl4 and NH3) to deposit a pretreatment material on a the chamber surface. After the pretreatment, the first microfeature workpiece may be placed in the chamber and TiN may be deposited on the microfeature workpiece by alternately introducing quantities of first and second deposition precursors.
    Type: Application
    Filed: August 21, 2003
    Publication date: February 24, 2005
    Inventors: Kevin Beaman, Ronald Weimer, Lyle Breiner, Er-Xuan Ping, Trung Doan, Cem Basceri, David Kubista, Lingyi Zheng
  • Publication number: 20050039686
    Abstract: The present disclosure describes apparatus and methods for processing microfeature workpieces, e.g., by depositing material on a microelectronic semiconductor using atomic layer deposition. Some of these apparatus include microfeature workpiece holders that include gas distributors. One exemplary implementation provides a microfeature workpiece holder adapted to hold a plurality of microfeature workpieces. This workpiece holder includes a plurality of workpiece supports and a gas distributor. The workpiece supports are adapted to support a plurality of microfeature workpieces in a spaced-apart relationship to define a process space adjacent a surface of each microfeature workpiece. The gas distributor includes an inlet and a plurality of outlets, with each of the outlets positioned to direct a flow of process gas into one of the process spaces.
    Type: Application
    Filed: August 21, 2003
    Publication date: February 24, 2005
    Inventors: Lingyi Zheng, Trung Doan, Lyle Breiner, Er-Xuan Ping, Ronald Weimer, David Kubista, Kevin Beaman, Cem Basceri
  • Publication number: 20050032393
    Abstract: Methods for forming a nitride barrier film layer in semiconductor devices such as gate structures, and barrier layers, semiconductor devices and gate electrodes are provided. The nitride layer is particularly useful as a barrier to boron diffusion into an oxide film. The nitride barrier layer is formed by selectively depositing silicon onto an oxide substrate as a thin layer, and then thermally annealing the silicon layer in a nitrogen-containing species or exposing the silicon to a plasma source of nitrogen to nitridize the silicon layer.
    Type: Application
    Filed: September 1, 2004
    Publication date: February 10, 2005
    Applicant: Micron Technology Inc.
    Inventor: Ronald Weimer
  • Publication number: 20050026348
    Abstract: Methods for forming a nitride barrier film layer in semiconductor devices such as gate structures, and barrier layers, semiconductor devices and gate electrodes are provided. The nitride layer is particularly useful as a barrier to boron diffusion into an oxide film. The nitride barrier layer is formed by selectively depositing silicon onto an oxide substrate as a thin layer, and then thermally annealing the silicon layer in a nitrogen-containing species or exposing the silicon to a plasma source of nitrogen to nitridize the silicon layer.
    Type: Application
    Filed: September 1, 2004
    Publication date: February 3, 2005
    Applicant: Micron Technology Inc.
    Inventor: Ronald Weimer
  • Patent number: 6849544
    Abstract: A conductive structure for use in a semiconductor device includes a multilayer structure. A first layer includes a material containing silicon, e.g., polysilicon and silicon germanide. A barrier layer is formed over the first layer, with the barrier layer including metal silicide or metal silicide nitride. A top conductive layer is formed over the barrier layer. The top conductive layer can include metal or metal silicide. Selective oxidation can be performed to reduce the amount of oxidation of selected materials in a structure containing multiple layers, such as the multi-layer conductive structure. The selective oxidation is performed in a single-wafer rapid thermal processing system, in which a selected ambient, including hydrogen, is used to ensure low oxidation of a selected material, such as tungsten or a metal nitride.
    Type: Grant
    Filed: June 4, 2003
    Date of Patent: February 1, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Ronald A. Weimer, Yongjun Jeff Hu, Pai Hung Pan, Deepa Ratakonda, James Beck, Randhir P. S. Thakur
  • Publication number: 20050003680
    Abstract: The invention includes methods of forming deuterated silicon nitride-containing materials from at least one deuterated nitrogen compound in combination with one or more silicon-containing compounds that do not contain hydrogen isotopes. Suitable deuterated nitrogen compounds can comprise, for example, NH2D, NHD2 and ND3. Suitable silicon-containing compounds include, for example, SiCl4 and Si2Cl6. Deuterated silicon nitride-containing materials of the present invention can be incorporated into, for example, transistor devices. The transistor devices can be utilized in DRAM cells, which in turn can be utilized in electronic systems.
    Type: Application
    Filed: July 3, 2003
    Publication date: January 6, 2005
    Inventors: Ronald Weimer, Lyle Breiner
  • Publication number: 20040229433
    Abstract: The present invention provides a method for improving the erase speed and the uniformity of erase characteristics in erasable programmable read-only memories. This result is achieved by forming polycrystalline floating gate layers with optimized grain size on a tunnel dielectric layer. Nucleation sites are formed by exposing the tunnel dielectric layer to a first set of conditions including a first temperature and a first atmosphere selected to optimize nucleation site size and distribution density across the tunnel dielectric layer. A polycrystalline floating gate layer is formed on top of the nucleation sites by exposing the nucleation sites to a second set of conditions including a second temperature and a second atmosphere selected to optimize polycrystalline grain size and distribution density across the polycrystalline floating gate layer.
    Type: Application
    Filed: June 18, 2004
    Publication date: November 18, 2004
    Inventor: Ronald A. Weimer