Patents by Inventor Rong Fan

Rong Fan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100075428
    Abstract: Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.
    Type: Application
    Filed: October 28, 2008
    Publication date: March 25, 2010
    Applicant: The Regents of the University of California
    Inventors: Daojing Wang, Peidong Yang, Woong Kim, Rong Fan
  • Publication number: 20100003516
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Application
    Filed: June 19, 2009
    Publication date: January 7, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Arun Majumdar, Ali Shakouri, Timothy D. Sands, Peidong Yang, Samuel S. Mao, Richard E. Russo, Henning Feick, Eicke R. Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Publication number: 20090283751
    Abstract: Nanofluidic devices incorporating inorganic nanotubes fluidly coupled to channels or nanopores for supplying a fluid containing chemical or biochemical species are described. In one aspect, two channels are fluidly interconnected with a nanotube. Electrodes on opposing sides of the nanotube establish electrical contact with the fluid therein. A bias current is passed between the electrodes through the fluid, and current changes are detected to ascertain the passage of select molecules, such as DNA, through the nanotube. In another aspect, a gate electrode is located proximal the nanotube between the two electrodes thus forming a nanofluidic transistor. The voltage applied to the gate controls the passage of ionic species through the nanotube selected as either or both ionic polarities. In either of these aspects the nanotube can be modified, or functionalized, to control the selectivity of detection or passage.
    Type: Application
    Filed: December 15, 2008
    Publication date: November 19, 2009
    Inventors: Peidong Yang, Arunava Majumdar, Rong Fan, Rohit Karnik
  • Publication number: 20090269345
    Abstract: Isolated anti-Cln248 antibodies that bind to Cln248 and cells that produce the anti-Cln248 antibodies are provided. Also provided are compositions of an anti-Cln248 antibody and a carrier. In addition, isolated nucleic acids encoding an anti-Cln248 antibody, as well as an expression vector for the isolated nucleic acids are provided. Methods for identifying anti-Cln248 antibodies, methods for producing the anti-Cln248 antibodies, as well as methods for their use in killing a Cln248-expressing cancer cells and alleviating or treating a Cln248-expressing cancer in a mammal are also provided.
    Type: Application
    Filed: December 22, 2006
    Publication date: October 29, 2009
    Inventors: Rong Fan, Nam Kim, Robert L. Wolfert
  • Publication number: 20090263912
    Abstract: A microfluidic optical sensor utilizes at least one subwavelength nanowire or nanoribbon waveguide coupled to a fluidic structure having at least one nanofluidic channel through which one or more molecular species are conveyed. In response to optical pumping (e.g., a laser source) the waveguide optically interrogates nearby molecular species retained within said fluidic structure to detect chemical species in response to optical characterization of small (on the order of sub-picoliter) volumes of solution. Characterization is performed in response to evanescent wave sensing. In one aspect, optical characterization is selected from the group of optical characterizations consisting of absorbance, fluorescence and surface enhanced Raman spectroscopy (SERS).
    Type: Application
    Filed: March 11, 2009
    Publication date: October 22, 2009
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Peidong Yang, Donald J. Sirbuly, Rong Fan, Matthew Law, Andrea Tao
  • Patent number: 7569847
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: August 4, 2009
    Assignee: The Regents of the University of California
    Inventors: Arun Majumdar, Ali Shakouri, Timothy D. Sands, Peidong Yang, Samuel S. Mao, Richard E. Russo, Henning Feick, Eicke R. Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Patent number: 7569941
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: August 4, 2009
    Assignee: The Regents of the University of California
    Inventors: Arun Majumdar, Ali Shakouri, Timothy D. Sands, Peidong Yang, Samuel S. Mao, Richard E. Russo, Henning Feick, Eicke R. Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Publication number: 20090036324
    Abstract: Arrays and substrates comprising a material, in particular capture agents and/or detectable targets, attached to the substrates along substantially parallel lines forming a barcoded pattern and related methods and systems.
    Type: Application
    Filed: July 16, 2008
    Publication date: February 5, 2009
    Inventors: Rong Fan, Habib Ahmad, James R. Heath
  • Publication number: 20090017455
    Abstract: Provided herein are methods and systems for detecting and/or sorting targets in a sample based on the combined use of polynucleotide-encoded-protein and substrate polynucleotides. The polynucleotide-encoded protein is comprised of a protein that specifically binds to a predetermined target and of an encoding polynucleotide that specifically binds to a substrate polynucleotide, wherein the substrate polynucleotide is attached to a substrate.
    Type: Application
    Filed: August 1, 2007
    Publication date: January 15, 2009
    Inventors: Gabriel A. Kwong, Ryan C. Bailey, Rong Fan, James R. Heath
  • Publication number: 20090012096
    Abstract: This invention relates to a pharmaceutical composition for preventing and curing myocardium ischemia and reducing area of myocardial infarction, its pharmaceutical preparation and applications. The composition includes (a) levocarnitine or its derivatives, and (b) trimetazidine or its medicative salts. The quantity of levocarnitine or its derivatives, and trimetazidine or its medicative salts in the composition is effective amount for treating myocardial ischemia and reducing the area of myocardial infarction.
    Type: Application
    Filed: May 28, 2008
    Publication date: January 8, 2009
    Inventors: Shuhua Gu, Changlin Mei, Dingfeng Su, Juan Du, Rong Fan
  • Publication number: 20080279094
    Abstract: A switching system compatible with ATCA/ATCA 300 architecture and a method for improving switching bandwidth, including: a backplane, a plurality of node boards and at least two hub boards; the node boards are connected with the hub nodes through the backplane; each node board is connected with the at least two hub boards; different data is transmitted on at least two data links between the node boards and the at least two hub boards, and the at least two hub boards cooperate with each other to implement a data switching between the node boards.
    Type: Application
    Filed: July 29, 2008
    Publication date: November 13, 2008
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Feng Hong, Cheng Chen, Rong Fan
  • Publication number: 20080092938
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Application
    Filed: December 22, 2006
    Publication date: April 24, 2008
    Inventors: Arun Majumdar, Ali Shakouri, Timothy Sands, Peidong Yang, Samuel Mao, Richard Russo, Henning Feick, Eicke Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Patent number: 7355216
    Abstract: Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: April 8, 2008
    Assignee: The Regents of the University of California
    Inventors: Peidong Yang, Rongrui He, Joshua Goldberger, Rong Fan, Yiying Wu, Deyu Li, Arun Majumdar
  • Publication number: 20070292346
    Abstract: This invention relates to a method for assessing risk of lung and/or breast cancer. Specifically, in one embodiment it relates to utilizing Lng105 to determine the risk of lung cancer. Specific antibodies are disclosed.
    Type: Application
    Filed: March 25, 2005
    Publication date: December 20, 2007
    Inventors: Rong Fan, Nam Kim, Robert Wolfert, Glenn Pilkington
  • Patent number: 7303815
    Abstract: A two-layer nanotape that includes a nanoribbon substrate and an oxide that is epitaxially deposited on a flat surface of the nanoribbon substrate is described. The oxide is deposited on the substrate using a pulsed laser ablation deposition process. The nanoribbons can be made from materials such as SnO2, ZnO, MgO, Al2O3, Si, GaN, or CdS. Also, the sintered oxide target can be made from materials such as TiO2, transition metal doped TiO2 (e.g., CO0.05Ti0.95O2), BaTiO3, ZnO, transition metal doped ZnO (e.g., Mn0.1Zn0.9O and Ni0.1Zn0.9O), LaMnO3, BaTiO3, PbTiO3, YBa2Cu3Oz, or SrCu2O2 and other p-type oxides. Additionally, temperature sensitive nanoribbon/metal bilayers and their method of fabrication by thermal evaporation are described. Metals such as Cu, Au, Ti, Al, Pt, Ni and others can be deposited on top of the nanoribbon surface. Such devices bend significantly as a function of temperature and are suitable as, for example, thermally activated nanoscale actuators.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: December 4, 2007
    Assignee: The Regents of the University of California
    Inventors: Peidong Yang, Matthew Law, Rongrui He, Rong Fan, Franklin Kim
  • Publication number: 20070237713
    Abstract: The invention provides isolated anti-PCan065 antibodies that bind to PCan065. The invention also encompasses compositions comprising an anti-PCan065 antibody and a carrier. These compositions can be provided in an article of manufacture or a kit. Another aspect of the invention is an isolated nucleic acid encoding an anti-PCan065 antibody, as well as an expression vector comprising the isolated nucleic acid. Also provided are cells that produce the anti-PCan065 antibodies. The invention encompasses a method of producing the anti-PCan065 antibodies. Other aspects of the invention are a method of killing an PCan065-expressing cancer cell, comprising contacting the cancer cell with an anti-PCan065 antibody and a method of alleviating or treating an PCan065-expressing cancer in a mammal, comprising administering a therapeutically effective amount of the anti-PCan065 antibody to the mammal.
    Type: Application
    Filed: April 4, 2007
    Publication date: October 11, 2007
    Inventors: Rong Fan, Kirstin Krall
  • Patent number: 7246570
    Abstract: A method of determining temperature and temperature distribution over the surface of an object includes (a) applying a temperature sensitive film composed of material displaying change in color as a function of temperature on a surface of an object; and (b) comparing the color changes on the film with predetermined color and temperature data developed for the film. A related temperature indication device includes a temperature indication device for measuring the temperature and temperature distribution over a surface of an object comprising: a thin film composed of a plurality of fibers embedded in an inert binder wherein the plurality of metal or metal alloy fibers have a property whereby the fibers exhibit color change as a function of temperature, when the thin film is engaged with the surface of the object.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: July 24, 2007
    Assignee: General Electric Company
    Inventors: Dacong Weng, Rong Fan, Xiwang Qi, Shekhar Shripad Kamat
  • Publication number: 20070164270
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Application
    Filed: December 22, 2006
    Publication date: July 19, 2007
    Inventors: Arun Majumdar, Ali Shakouri, Timothy Sands, Peidong Yang, Samuel Mao, Richard Russo, Henning Feick, Eicke Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Publication number: 20070140638
    Abstract: Nanoribbons and nanowires having diameters less than the wavelength of light are used in the formation and operation of optical circuits and devices. Such nanostructures function as subwavelength optical waveguides which form a fundamental building block for optical integration. The extraordinary length, flexibility and strength of these structures enable their manipulation on surfaces, including the precise positioning and optical linking of nanoribbon/wire waveguides and other nanoribbon/wire elements to form optical networks and devices. In addition, such structures provide for waveguiding in liquids, enabling them to further be used in other applications such as optical probes and sensors.
    Type: Application
    Filed: November 13, 2006
    Publication date: June 21, 2007
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: PEIDONG YANG, MATT LAW, DONALD SIRBULY, JUSTIN JOHNSON, RICHARD SAYKALLY, RONG FAN, ANDREA TAO
  • Patent number: 7211143
    Abstract: Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the <001> direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar “epitaxial-casting” approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: May 1, 2007
    Assignee: The Regents of the University of California
    Inventors: Peidong Yang, Rongrui He, Joshua Goldberger, Rong Fan, Yi-Ying Wu, Deyu Li, Arun Majumdar