Patents by Inventor Rong Fan

Rong Fan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8440453
    Abstract: A functionalized nanofluidic channel and method for functionalization that provides control over the ionic environment and geometry of the nanofluidic channel with the immobilization of biomolecules on the inner surface of the channel and use of high ionic concentration solutions. In one embodiment, the surface charge of the nanochannel is controlled with the immobilization of a protein such as streptavidin in the nanochannel. In another embodiment, the biomolecules are receptors and changes in nanochannel conductance indicates ligand binding events. The functionalized nanofluidic channel can be easily adapted for use with microchannel arrays.
    Type: Grant
    Filed: January 3, 2008
    Date of Patent: May 14, 2013
    Assignee: The Regents of the University of California
    Inventors: Peidong Yang, Rohit Karnik, Kenneth Castelino, Rong Fan, Arun Majumdar
  • Patent number: 8354231
    Abstract: Provided herein are methods and systems for detecting and/or sorting targets in a sample based on the combined use of polynucleotide-encoded protein and substrate polynucleotides. The polynucleotide-encoded protein is comprised of a protein that specifically binds to a predetermined target and of an encoding polynucleotide that specifically binds to a substrate polynucleotide, wherein the substrate polynucleotide is attached to a substrate.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: January 15, 2013
    Assignee: Cal. Inst. Tech.
    Inventors: Gabriel A. Kwong, Ryan C. Bailey, Rong Fan, James R. Heath
  • Publication number: 20120299424
    Abstract: A transmission shaft is disposed between a driving device and at least one driven device. At least one centrifugal device is disposed on the transmission shaft. The centrifugal device generates a centrifugal force and applies an inertia affect formed by the centrifugal force to the transmission shaft, so as to drive the transmission shaft to rotate. Energy generated by the driven device is greater than energy consumed when the driving device drives the driven device, thereby effectively reducing the consumption of earth resources and effectively solving a problem of earth environmental protection.
    Type: Application
    Filed: May 22, 2012
    Publication date: November 29, 2012
    Applicant: SHEN YANG TECHNOLOGIES ENTERPRISE CO., LTD.
    Inventors: Hui Yen TSAI, Wen-Lon CHENG, Chiu-Rong FAN, Tien CHUANG
  • Publication number: 20120299425
    Abstract: A closed energy combined cycle system and an operation method. This includes a power supply mechanism, for providing a high voltage; a driving device, controlled by the high voltage of the power supply mechanism; and a power generation device, in which the driving device rotates the power generation device to generate power through a transmission shaft, and the power generated by the power generation device supplied to the power supply mechanism and a load, in which the driving device rotates the transmission shaft at a high rotational speed, the transmission shaft rotates the power generation device to generate the power. Power generation efficiency of the power generation device may be enhanced, thereby greatly improving overall efficiency of the system, and resources used by the driving device for rotating the power generation device may be reduced, thereby effectively reducing consumption of earth resources and providing earth environmental protection.
    Type: Application
    Filed: May 22, 2012
    Publication date: November 29, 2012
    Applicant: SHEN YANG TECHNOLOGIES ENTERPRISE CO., LTD.
    Inventors: Hui Yen TSAI, Wen-Lon CHENG, Chiu-Rong FAN, Tien CHUANG
  • Patent number: 8280214
    Abstract: Nanoribbons and nanowires having diameters less than the wavelength of light are used in the formation and operation of optical circuits and devices. Such nanostructures function as subwavelength optical waveguides which form a fundamental building block for optical integration. The extraordinary length, flexibility and strength of these structures enable their manipulation on surfaces, including the precise positioning and optical linking of nanoribbon/wire waveguides and other nanoribbon/wire elements to form optical networks and devices. In addition, such structures provide for waveguiding in liquids, enabling them to further be used in other applications such as optical probes and sensors.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: October 2, 2012
    Assignee: The Regents of the University of California
    Inventors: Peidong Yang, Matt Law, Donald J. Sirbuly, Justin C. Johnson, Richard Saykally, Rong Fan, Andrea Tao
  • Publication number: 20120171778
    Abstract: A functionalized nanofluidic channel and method for functionalization that provides control over the ionic environment and geometry of the nanofluidic channel with the immobilization of biomolecules on the inner surface of the channel and use of high ionic concentration solutions. In one embodiment, the surface charge of the nanochannel is controlled with the immobilization of a protein such as streptavidin in the nanochannel. In another embodiment, the biomolecules are receptors and changes in nanochannel conductance indicates ligand binding events. The functionalized nanofluidic channel can be easily adapted for use with microchannel arrays.
    Type: Application
    Filed: January 3, 2008
    Publication date: July 5, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Peidong Yang, Rohit Karnik, Kenneth Castelino, Rong Fan, Arun Majumdar
  • Patent number: 8093628
    Abstract: Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: January 10, 2012
    Assignee: The Regents of the University of California
    Inventors: Peidong Yang, Rongrui He, Joshua Goldberger, Rong Fan, Yiying Wu, Deyu Li, Arun Majumdar
  • Publication number: 20110233512
    Abstract: Vertical integrated field effect transistor circuits and methods are described which are fabricated from Silicon, Germanium, or a combination Silicon and Germanium based on nanowires grown in place on the substrate. By way of example, vertical integrated transistors are formed from one or more nanowires which have been insulated, had a gate deposited thereon, and to which a drain is coupled to the exposed tips of one or more of the nanowires. The nanowires are preferably grown over a surface or according to a desired pattern in response to dispersing metal nanoclusters over the desired portions of the substrate. In one preferred implementation, SiCl4 is utilized as a gas phase precursor during the nanowire growth process. In place nanowire growth is also taught in conjunction with structures, such as trenches, while bridging forms of nanowires are also described.
    Type: Application
    Filed: January 16, 2008
    Publication date: September 29, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Peidong Yang, Joshua Goldberger, Allon Hochbaum, Rong Fan, Rongrui He
  • Patent number: 8022361
    Abstract: Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: September 20, 2011
    Assignee: The Regents of the University of California
    Inventors: Daojing Wang, Peidong Yang, Woong Kim, Rong Fan
  • Patent number: 8021795
    Abstract: A method for manufacturing a solid oxide electrochemical device comprising disposing electrolyte between a first electrode and a second electrode, applying a bonding agent between the first electrode and a first interconnect, applying a sealing agent between the first electrode and the first interconnect, disposing a second interconnect adjacent to the second electrode, heating the first interconnect, the first electrode, the electrolyte, the second electrode, the second interconnect, the bonding agent, and the sealing agent to at least one intermediate temperature for at least one intermediate length of time, and then to a curing temperature, for a curing time, effective to bond and seal the first electrode to the first interconnect, wherein the at least one intermediate temperature is less than the curing temperature.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: September 20, 2011
    Assignee: General Electric Company
    Inventors: Xiwang Qi, Rong Fan, Andrew Philip Shapiro, Dacong Weng, Jie Guan, James Daniel Power, Stanley F. Simpson
  • Patent number: 7989118
    Abstract: A method of manufacturing a fuel cell stack is provided. The method provides forming an inspectable preassembly of multiple fuel cell assemblies that may be termed a pseudostack. Each fuel cell in the pseudostack has permanent electrical interconnections and sealing connections on only one of the two electrodes, namely an anode layer or a cathode layer. For example, an anode interconnect may be firmly attached to the anode layer by means of a bonding agent and a sealing agent used to seal passages on the anode layer of the fuel cell. Alternatively, seals and permanent electrical connections may be made on the cathode layer of the fuel cell, and not on the anode layer.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: August 2, 2011
    Assignee: General Electric Company
    Inventors: Richard Scott Bourgeois, Richard Louis Hart, Sauri Gudlavalleti, Shu Ching Quek, Andrew Philip Shapiro, Rong Fan, Dacong Weng, Xiwang Qi
  • Publication number: 20110168968
    Abstract: Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches.
    Type: Application
    Filed: February 7, 2008
    Publication date: July 14, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Peidong Yang, Rongrui He, Joshua Goldberger, Rong Fan, Yiying Wu, Deyu Li, Arun Majumdar
  • Patent number: 7898005
    Abstract: Nanofluidic devices incorporating inorganic nanotubes fluidly coupled to channels or nanopores for supplying a fluid containing chemical or bio-chemical species are described. In one aspect, two channels are fluidly interconnected with a nanotube. Electrodes on opposing sides of the nanotube establish electrical contact with the fluid therein. A bias current is passed between the electrodes through the fluid, and current changes are detected to ascertain the passage of select molecules, such as DNA, through the nanotube. In another aspect, a gate electrode is located proximal the nanotube between the two electrodes thus forming a nanofluidic transistor. The voltage applied to the gate controls the passage of ionic species through the nanotube selected as either or both ionic polarities. In either of these aspects the nanotube can be modified, or functionalized, to control the selectivity of detection or passage.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: March 1, 2011
    Assignee: The Regents of the University of California
    Inventors: Peidong Yang, Arunava Majumdar, Rong Fan, Rohit Karnik
  • Publication number: 20110039717
    Abstract: Provided herein are methods and systems for detecting and/or sorting targets in a sample based on the combined use of polynucleotide-encoded protein and substrate polynucleotides. The polynucleotide-encoded protein is comprised of a protein that specifically binds to a predetermined target and of an encoding polynucleotide that specifically binds to a substrate polynucleotide, wherein the substrate polynucleotide is attached to a substrate.
    Type: Application
    Filed: January 4, 2010
    Publication date: February 17, 2011
    Inventors: Gabriel A. Kwong, Ryan C. Bailey, Rong Fan, James R. Heath
  • Patent number: 7834264
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: November 16, 2010
    Assignee: The Regents of the University of California
    Inventors: Arun Majumdar, Ali Shakouri, Timothy D. Sands, Peidong Yang, Samuel S. Mao, Richard E. Russo, Henning Feick, Eicke R. Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Publication number: 20100239940
    Abstract: A method of manufacturing a fuel cell stack is provided. The method provides forming an inspectable preassembly of multiple fuel cell assemblies that may be termed a pseudostack. Each fuel cell in the pseudostack has permanent electrical interconnections and sealing connections on only one of the two electrodes, namely an anode layer or a cathode layer. For example, an anode interconnect may be firmly attached to the anode layer by means of a bonding agent and a sealing agent used to seal passages on the anode layer of the fuel cell. Alternatively, seals and permanent electrical connections may be made on the cathode layer of the fuel cell, and not on the anode layer.
    Type: Application
    Filed: June 1, 2010
    Publication date: September 23, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Richard Scott Bourgeois, Richard Louis Hart, Sauri Gudlavalleti, Shu Ching Quek, Andrew Philip Shapiro, Rong Fan, Dacong Weng, Xiwang Qi
  • Publication number: 20100075428
    Abstract: Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.
    Type: Application
    Filed: October 28, 2008
    Publication date: March 25, 2010
    Applicant: The Regents of the University of California
    Inventors: Daojing Wang, Peidong Yang, Woong Kim, Rong Fan
  • Publication number: 20100003516
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Application
    Filed: June 19, 2009
    Publication date: January 7, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Arun Majumdar, Ali Shakouri, Timothy D. Sands, Peidong Yang, Samuel S. Mao, Richard E. Russo, Henning Feick, Eicke R. Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Publication number: 20090283751
    Abstract: Nanofluidic devices incorporating inorganic nanotubes fluidly coupled to channels or nanopores for supplying a fluid containing chemical or biochemical species are described. In one aspect, two channels are fluidly interconnected with a nanotube. Electrodes on opposing sides of the nanotube establish electrical contact with the fluid therein. A bias current is passed between the electrodes through the fluid, and current changes are detected to ascertain the passage of select molecules, such as DNA, through the nanotube. In another aspect, a gate electrode is located proximal the nanotube between the two electrodes thus forming a nanofluidic transistor. The voltage applied to the gate controls the passage of ionic species through the nanotube selected as either or both ionic polarities. In either of these aspects the nanotube can be modified, or functionalized, to control the selectivity of detection or passage.
    Type: Application
    Filed: December 15, 2008
    Publication date: November 19, 2009
    Inventors: Peidong Yang, Arunava Majumdar, Rong Fan, Rohit Karnik
  • Publication number: 20090269345
    Abstract: Isolated anti-Cln248 antibodies that bind to Cln248 and cells that produce the anti-Cln248 antibodies are provided. Also provided are compositions of an anti-Cln248 antibody and a carrier. In addition, isolated nucleic acids encoding an anti-Cln248 antibody, as well as an expression vector for the isolated nucleic acids are provided. Methods for identifying anti-Cln248 antibodies, methods for producing the anti-Cln248 antibodies, as well as methods for their use in killing a Cln248-expressing cancer cells and alleviating or treating a Cln248-expressing cancer in a mammal are also provided.
    Type: Application
    Filed: December 22, 2006
    Publication date: October 29, 2009
    Inventors: Rong Fan, Nam Kim, Robert L. Wolfert