Patents by Inventor Rongjun Wang

Rongjun Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170350001
    Abstract: Target assemblies and PVD chambers including target assemblies are disclosed. The target assembly includes a target that has a concave shaped target. When used in a PVD chamber, the concave target provides more radially uniform deposition on a substrate disposed in the sputtering chamber.
    Type: Application
    Filed: August 17, 2017
    Publication date: December 7, 2017
    Inventors: Zhendong Liu, Rongjun Wang, Xianmin Tang, Srinivas Gandikota, Tza-Jing Gung, Muhammad M. Rasheed
  • Patent number: 9834840
    Abstract: Apparatus for improved particle reduction are provided herein. In some embodiments, an apparatus may include a process kit shield comprising a one-piece metal body having an upper portion and a lower portion and having an opening disposed through the one-piece metal body, wherein the upper portion includes an opening-facing surface configured to be disposed about and spaced apart from a target of a physical vapor deposition chamber and wherein the opening-facing surface is configured to limit particle deposition on an upper surface of the upper portion of the one-piece metal body during sputtering of a target material from the target of the physical vapor deposition chamber.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: December 5, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Muhammad Rasheed, Rongjun Wang, Zhendong Liu, Xinyu Fu, Xianmin Tang
  • Publication number: 20170253959
    Abstract: Methods and apparatus for controlling the ion fraction in physical vapor deposition processes are disclosed. In some embodiments, a process chamber for processing a substrate having a given diameter includes: an interior volume and a target to be sputtered, the interior volume including a central portion and a peripheral portion; a rotatable magnetron above the target to form an annular plasma in the peripheral portion; a substrate support disposed in the interior volume to support a substrate having the given diameter; a first set of magnets disposed about the body to form substantially vertical magnetic field lines in the peripheral portion; a second set of magnets disposed about the body and above the substrate support to form magnetic field lines directed toward a center of the support surface; a first power source to electrically bias the target; and a second power source to electrically bias the substrate support.
    Type: Application
    Filed: March 3, 2017
    Publication date: September 7, 2017
    Inventors: Xiaodong WANG, Joung Joo LEE, Fuhong ZHANG, Martin Lee RIKER, Keith A. MILLER, William FRUCHTERMAN, Rongjun WANG, Adolph Miller ALLEN, Shouyin ZHANG, Xianmin TANG
  • Patent number: 9752228
    Abstract: Target assemblies and PVD chambers including target assemblies are disclosed. The target assembly includes a target that has a concave shaped target. When used in a PVD chamber, the concave target provides more radially uniform deposition on a substrate disposed in the sputtering chamber.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: September 5, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Zhendong Liu, Rongjun Wang, Xianmin Tang, Srinivas Gandikota, Tza-Jing Gung, Muhammad M. Rasheed
  • Patent number: 9689070
    Abstract: Embodiments of the invention generally relate to a process kit for a semiconductor processing chamber, and a semiconductor processing chamber having a kit. More specifically, embodiments described herein relate to a process kit including a deposition ring and a pedestal assembly. The components of the process kit work alone, and in combination, to significantly reduce their effects on the electric fields around a substrate during processing.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: June 27, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Muhammad Rasheed, Keith A. Miller, Rongjun Wang
  • Publication number: 20170178877
    Abstract: Methods and apparatus for processing a substrate are disclosed herein. In some embodiments, a process chamber includes: a chamber body defining an interior volume; a substrate support to support a substrate within the interior volume; a plurality of cathodes coupled to the chamber body and having a corresponding plurality of targets to be sputtered onto the substrate; and a shield rotatably coupled to an upper portion of the chamber body and having at least one hole to expose at least one of the plurality of targets to be sputtered and at least one pocket disposed in a backside of the shield to accommodate and cover at least another one of the plurality of targets not to be sputtered, wherein the shield is configured to rotate about and linearly move along a central axis of the process chamber.
    Type: Application
    Filed: December 20, 2015
    Publication date: June 22, 2017
    Inventors: RONGJUN WANG, ANANTHA K. SUBRAMANI, CHI HONG CHING, XIANMIN TANG
  • Publication number: 20170170393
    Abstract: Embodiments of the disclosure provide methods and apparatus for fabricating magnetic tunnel junction (MTJ) structures on a substrate in for spin-transfer-torque magnetoresistive random access memory (STT-MRAM) applications. In one example, a film stack utilized to form a magnetic tunnel junction structure on a substrate includes a pinned layer disposed on a substrate, wherein the pinned layer comprises multiple layers including at least one or more of a Co containing layer, Pt containing layer, Ta containing layer, an Ru containing layer, an optional structure decoupling layer disposed on the pinned magnetic layer, a magnetic reference layer disposed on the optional structure decoupling layer, a tunneling barrier layer disposed on the magnetic reference layer, a magnetic storage layer disposed on the tunneling barrier layer, and a capping layer disposed on the magnetic storage layer.
    Type: Application
    Filed: February 21, 2017
    Publication date: June 15, 2017
    Inventors: Lin XUE, Jaesoo AHN, Mahendra PAKALA, Chi Hong CHING, Rongjun WANG
  • Publication number: 20170125215
    Abstract: Methods are disclosed for depositing a thin film of compound material on a substrate. In some embodiments, a method of depositing a layer of compound material on a substrate include: flowing a reactive gas into a plasma processing chamber having a substrate to be sputter deposited disposed therein in opposition to a sputter target comprising a metal; exciting the reactive gas into a reactive gas plasma to react with the sputter target and to form a first layer of compound material thereon; flowing an inert gas into the plasma processing chamber; and exciting the inert gas into a plasma to sputter a second layer of the compound material onto the substrate directly from the first layer of compound material. The cycles of target poisoning and sputtering may be repeated until a compound material layer of appropriate thickness has been formed on the substrate.
    Type: Application
    Filed: December 31, 2015
    Publication date: May 4, 2017
    Inventors: Yana CHENG, Zhefeng LI, Chi Hong CHING, Yong CAO, Rongjun WANG
  • Patent number: 9633839
    Abstract: In some embodiments a method of processing a substrate disposed atop a substrate support in a physical vapor deposition process chamber includes: (a) depositing a dielectric layer to a first thickness atop a first surface of the substrate via a physical vapor deposition process; (b) providing a first plasma forming gas to a processing region of the physical vapor deposition process chamber, wherein the first plasma forming gas comprises hydrogen but not carbon; (c) providing a first amount of bias power to a substrate support to form a first plasma from the first plasma forming gas within the processing region of the physical vapor deposition process chamber; (d) exposing the dielectric layer to the first plasma; and (e) repeating (a)-(d) to deposit the dielectric film to a final thickness.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: April 25, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Weimin Zeng, Thanh X. Nguyen, Yana Cheng, Yong Cao, Daniel Lee Diehl, Srinivas Guggilla, Rongjun Wang, Xianmin Tang
  • Publication number: 20170029941
    Abstract: Embodiments of the invention generally provide a processing chamber used to perform a physical vapor deposition (PVD) process and methods of depositing multi-compositional films. The processing chamber may include: an improved RF feed configuration to reduce any standing wave effects; an improved magnetron design to enhance RF plasma uniformity, deposited film composition and thickness uniformity; an improved substrate biasing configuration to improve process control; and an improved process kit design to improve RF field uniformity near the critical surfaces of the substrate.
    Type: Application
    Filed: August 15, 2016
    Publication date: February 2, 2017
    Inventors: Adolph Miller ALLEN, Lara HAWRYLCHAK, Zhigang XIE, Muhammad M. RASHEED, Rongjun WANG, Xianmin TANG, Zhendong LIU, Tza-Jing GUNG, Srinivas GANDIKOTA, Mei CHANG, Michael S. COX, Donny YOUNG, Kirankumar SAVANDAIAH, Zhenbin GE
  • Publication number: 20170018706
    Abstract: Embodiments of the disclosure provide methods and apparatus for fabricating magnetic tunnel junction (MTJ) structures on a substrate in for spin-transfer-torque magnetoresistive random access memory (STT-MRAM) applications. In one embodiment, the method includes patterning a film stack having a tunneling barrier layer disposed between a magnetic reference layer and a magnetic storage layer disposed on a substrate to remove a portion of the film stack from the substrate until an upper surface of the substrate is exposed, forming a sidewall passivation layer on sidewalls of the patterned film stack and subsequently performing a thermal annealing process to the film stack.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 19, 2017
    Inventors: Lin XUE, Jaesoo AHN, Mahendra PAKALA, Chi Hong CHING, Rongjun WANG
  • Publication number: 20160372319
    Abstract: In some embodiments a method of processing a substrate disposed atop a substrate support in a physical vapor deposition process chamber includes: (a) depositing a dielectric layer to a first thickness atop a first surface of the substrate via a physical vapor deposition process; (b) providing a first plasma forming gas to a processing region of the physical vapor deposition process chamber, wherein the first plasma forming gas comprises hydrogen but not carbon; (c) providing a first amount of bias power to a substrate support to form a first plasma from the first plasma forming gas within the processing region of the physical vapor deposition process chamber; (d) exposing the dielectric layer to the first plasma; and (e) repeating (a)-(d) to deposit the dielectric film to a final thickness.
    Type: Application
    Filed: June 19, 2015
    Publication date: December 22, 2016
    Inventors: Weimin ZENG, Thanh X. NGUYEN, Yana CHENG, Yong CAO, Daniel Lee DIEHL, Srinivas GUGGILLA, Rongjun WANG, Xianmin TANG
  • Publication number: 20160340775
    Abstract: Embodiments of the invention generally relate to a process kit for a semiconductor processing chamber, and a semiconductor processing chamber having a kit. More specifically, embodiments described herein relate to a process kit including a deposition ring and a pedestal assembly. The components of the process kit work alone, and in combination, to significantly reduce their effects on the electric fields around a substrate during processing.
    Type: Application
    Filed: July 21, 2016
    Publication date: November 24, 2016
    Inventors: Muhammad RASHEED, Keith A. MILLER, Rongjun WANG
  • Publication number: 20160293798
    Abstract: Fabrication of gallium nitride-based light devices with physical vapor deposition (PVD)-formed aluminum nitride buffer layers is described. Process conditions for a PVD AlN buffer layer are also described. Substrate pretreatments for a PVD aluminum nitride buffer layer are also described. In an example, a method of fabricating a buffer layer above a substrate involves pre-treating a surface of a substrate. The method also involves, subsequently, reactive sputtering an aluminum nitride (AlN) layer on the surface of the substrate from an aluminum-containing target housed in a physical vapor deposition (PVD) chamber with a nitrogen-based gas or plasma.
    Type: Application
    Filed: June 15, 2016
    Publication date: October 6, 2016
    Inventors: Mingwei Zhu, Rongjun Wang, Nag B. Patibandla, Xianmin Tang, Vivek Agrawal, Cheng-Hsiung Tsai, Muhammad Rasheed, Dinesh Saigal, Praburam Gopal Raja, Omkaram Nalamasu, Anantha Subramani
  • Patent number: 9396933
    Abstract: Fabrication of gallium nitride-based light devices with physical vapor deposition (PVD)-formed aluminum nitride buffer layers is described. Process conditions for a PVD AlN buffer layer are also described. Substrate pretreatments for a PVD aluminum nitride buffer layer are also described. In an example, a method of fabricating a buffer layer above a substrate involves pre-treating a surface of a substrate. The method also involves, subsequently, reactive sputtering an aluminum nitride (AlN) layer on the surface of the substrate from an aluminum-containing target housed in a physical vapor deposition (PVD) chamber with a nitrogen-based gas or plasma.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: July 19, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Mingwei Zhu, Rongjun Wang, Nag B. Patibandia, Xianmin Tang, Vivek Agrawal, Cheng-Hsiung Tsai, Muhammad Rasheed, Dinesh Saigal, Praburam Gopal Raja, Omkaram Nalamasu, Anantha Subramani
  • Patent number: 9281167
    Abstract: A dual magnetron particularly useful for RF plasma sputtering includes a radially stationary open-loop magnetron comprising opposed magnetic poles and rotating about a central axis to scan an outer region of a sputter target and a radially movable open-loop magnetron comprising opposed magnetic poles and rotating together with the stationary magnetron. During processing, the movable magnetron is radially positioned in the outer region with an open end abutting an open end of the stationary magnetron to form a single open-loop magnetron. During cleaning, part of the movable magnetron is moved radially inwardly to scan and clean an inner region of the target not scanned by the stationary magnetron. The movable magnetron can be mounted on an arm pivoting about an axis at periphery of a rotating disk-shaped plate mounting the stationary magnetron so the arm centrifugally moves between radial positions dependent upon the rotation rate or direction.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: March 8, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Thanh X Nguyen, Rongjun Wang, Muhammad M Rasheed, Xianmin Tang
  • Publication number: 20160035937
    Abstract: Oxygen controlled PVD AlN buffers for GaN-based optoelectronic and electronic devices is described. Methods of forming a PVD AlN buffer for GaN-based optoelectronic and electronic devices in an oxygen controlled manner are also described. In an example, a method of forming an aluminum nitride (AlN) buffer layer for GaN-based optoelectronic or electronic devices involves reactive sputtering an AlN layer above a substrate, the reactive sputtering involving reacting an aluminum-containing target housed in a physical vapor deposition (PVD) chamber with a nitrogen-containing gas or a plasma based on a nitrogen-containing gas. The method further involves incorporating oxygen into the AlN layer.
    Type: Application
    Filed: October 15, 2015
    Publication date: February 4, 2016
    Inventors: Mingwei Zhu, Nag B. Patibandla, Rongjun Wang, Daniel Lee Diehl, Vivek Agrawal, Anantha Subramani
  • Publication number: 20150348773
    Abstract: Embodiments of the invention described herein generally relate to an apparatus and methods for forming high quality buffer layers and Group III-V layers that are used to form a useful semiconductor device, such as a power device, light emitting diode (LED), laser diode (LD) or other useful device. Embodiments of the invention may also include an apparatus and methods for forming high quality buffer layers, Group III-V layers and electrode layers that are used to form a useful semiconductor device. In some embodiments, an apparatus and method includes the use of one or more cluster tools having one or more physical vapor deposition (PVD) chambers that are adapted to deposit a high quality aluminum nitride (AlN) buffer layer that has a high crystalline orientation on a surface of a plurality of substrates at the same time.
    Type: Application
    Filed: July 1, 2013
    Publication date: December 3, 2015
    Inventors: Mingwei ZHU, Nag B. PATIBANDLA, Rongjun WANG, Vivek AGRAWAL, Anantha SUBRAMANI, Daniel Lee DIEHL, Xianmin TANG
  • Patent number: 9087679
    Abstract: Embodiments of the invention generally relate to a grounding kit for a semiconductor processing chamber, and a semiconductor processing chamber having a grounding kit. More specifically, embodiments described herein relate to a grounding kit which creates an asymmetric grounding path selected to significantly reduce the asymmetries caused by an off center RF power delivery.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: July 21, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Muhammad M. Rasheed, Rongjun Wang, Thanh X. Nguyen, Alan A. Ritchie
  • Publication number: 20150132551
    Abstract: A method for forming an anti-reflective coating (ARC) includes positioning a substrate below a target and flowing a first gas to deposit a first portion of the graded ARC onto the substrate. The method includes gradually flowing a second gas to deposit a second portion of the graded ARC, and gradually flowing a third gas while simultaneously gradually decreasing the flow of the second gas to deposit a third portion of the graded ARC. The method also includes flowing the third gas after stopping the flow of the second gas to form a fourth portion of the graded ARC. In another embodiment a film stack having a substrate having a graded ARC disposed thereon is provided. The graded ARC includes a first portion, a second portion disposed on the first portion, a third portion disposed on the second portion, and a fourth portion disposed on the third portion.
    Type: Application
    Filed: November 3, 2014
    Publication date: May 14, 2015
    Inventors: Yong CAO, Daniel Lee DIEHL, Rongjun WANG, Xianmin TANG, Tai-Chou Papo CHEN, Tingjun XU