Patents by Inventor Rongjun Wang

Rongjun Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11011357
    Abstract: Methods and apparatus for processing substrates with a multi-cathode chamber. The multi-cathode chamber includes a shield with a plurality of holes and a plurality of shunts. The shield is rotatable to orient the holes and shunts with a plurality of cathodes located above the shield. The shunts interact with magnets from the cathodes to prevent interference during processing. The shield can be raised and lowered to adjust gapping between a target of a cathode and a hole to provide a dark space during processing.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: May 18, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Hanbing Wu, Anantha K. Subramani, Ashish Goel, Xiaodong Wang, Wei W. Wang, Rongjun Wang, Chi Hong Ching
  • Patent number: 11011676
    Abstract: Fabrication of gallium nitride-based light devices with physical vapor deposition (PVD)-formed aluminum nitride buffer layers is described. Process conditions for a PVD AlN buffer layer are also described. Substrate pretreatments for a PVD aluminum nitride buffer layer are also described. In an example, a method of fabricating a buffer layer above a substrate involves pre-treating a surface of a substrate. The method also involves, subsequently, reactive sputtering an aluminum nitride (AlN) layer on the surface of the substrate from an aluminum-containing target housed in a physical vapor deposition (PVD) chamber with a nitrogen-based gas or plasma.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: May 18, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Mingwei Zhu, Rongjun Wang, Nag B. Patibandla, Xianmin Tang, Vivek Agrawal, Cheng-Hsiung Tsai, Muhammad Rasheed, Dinesh Saigal, Praburam Gopal Raja, Omkaram Nalamasu, Anantha Subramani
  • Patent number: 10998496
    Abstract: Embodiments of the disclosure provide methods for forming MTJ structures from a film stack disposed on a substrate for MRAM applications and associated MTJ devices. The methods described herein include forming the film properties of material layers from the film stack to create a film stack with a sufficiently high perpendicular magnetic anisotropy (PMA). An iron containing oxide capping layer is utilized to generate the desirable PMA. By utilizing an iron containing oxide capping layer, thickness of the capping layer can be more finely controlled and reliance on boron at the interface of the magnetic storage layer and the capping layer is reduced.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: May 4, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Lin Xue, Chi Hong Ching, Xiaodong Wang, Mahendra Pakala, Rongjun Wang
  • Patent number: 10957849
    Abstract: Embodiments of magnetic tunnel junction (MTJ) structures discussed herein employ a first pinning layer and a second pinning layer with a synthetic anti-ferrimagnetic layer disposed therebetween. The first pinning layer in contact with the seed layer can contain a single layer of platinum or palladium, alone or in combination with one or more bilayers of cobalt and platinum (Pt), nickel (Ni), or palladium (Pd), or combinations or alloys thereof, The first pinning layer and the second pinning layer can have a different composition or configuration such that the first pinning layer has a higher magnetic material content than the second pinning layer and/or is thicker than the second pinning layer. The MTJ stacks discussed herein maintain desirable magnetic properties subsequent to high temperature annealing.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: March 23, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Lin Xue, Chi Hong Ching, Rongjun Wang, Mahendra Pakala
  • Publication number: 20210071294
    Abstract: Methods and apparatus for controlling the ion fraction in physical vapor deposition processes are disclosed. In some embodiments, a physical vapor deposition chamber includes: a body having an interior volume and a lid assembly including a target to be sputtered; a magnetron disposed above the target, wherein the magnetron is configured to rotate a plurality of magnets about a central axis of the physical vapor deposition chamber; a substrate support disposed in the interior volume opposite the target and having a support surface configured to support a substrate; a collimator disposed between the target and the substrate support, the collimator having a central region having a first thickness and a peripheral region having a second thickness less than the first thickness; a first power source coupled to the target to electrically bias the target; and a second power source coupled to the substrate support to electrically bias the substrate support.
    Type: Application
    Filed: November 23, 2020
    Publication date: March 11, 2021
    Inventors: Xiaodong WANG, Joung Joo LEE, Fuhong ZHANG, Martin Lee RIKER, Keith A. MILLER, William FRUCHTERMAN, Rongjun WANG, Adolph Miller ALLEN, Shouyin ZHANG, Xianmin TANG
  • Patent number: 10944050
    Abstract: Embodiments of magnetic tunnel junction (MTJ) structures discussed herein employ seed layers of one or more layer of chromium (Cr), NiCr, NiFeCr, RuCr, IrCr, or CoCr, or combinations thereof. These seed layers are used in combination with one or more pinning layers, a first pinning layer in contact with the seed layer can contain a single layer of cobalt, or can contain cobalt in combination with bilayers of cobalt and platinum (Pt), iridium (Ir), nickel (Ni), or palladium (Pd), The second pinning layer can be the same composition and configuration as the first, or can be of a different composition or configuration. The MTJ stacks discussed herein maintain desirable magnetic properties subsequent to high temperature annealing.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: March 9, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Lin Xue, Chi Hong Ching, Rongjun Wang, Mahendra Pakala
  • Patent number: 10910557
    Abstract: Methods and apparatus for forming a magnetic tunnel element are provided herein. A method of forming a magnetic tunnel element includes: depositing a magnetic layer atop a cobalt-chromium seed layer; and depositing a tunnel layer atop the magnetic layer to form a magnetic tunnel element, wherein the magnetic tunnel element has a TMR greater than 100. For example, a cobalt/platinum material or one or more layers thereof may be deposited directly atop a cobalt-chromium seed layer to produce improved devices.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: February 2, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Chi Ching, Renu Whig, Rongjun Wang
  • Patent number: 10898902
    Abstract: A production line for recycling and processing waste materials of steel rolling, the production line including: an electromagnetic hoisting equipment; a conveying platform; a clamping-and-feeding device; a segmentation shear; a swing conveyor device; a pushing device; a rolling-type shearing machine; a chain-type conveyor track; a material guiding device; two shredding-type shearing machines; and a scrap collection device. The electromagnetic hoisting equipment is connected to the conveying platform, and is configured to hoist waste materials of steel rolling to the conveying platform; the conveying platform is connected to the clamping-and-feeding device, and is configured to convey the waste materials to the clamping-and-feeding device; the segmentation shear cooperates with the clamping-and-feeding device and is configured to segment the waste materials of steel rolling into steel plates; the pushing device is configured to push the steel plates to the rolling-type shearing machine.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: January 26, 2021
    Assignee: TAIYUAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Lifeng Ma, Xiao Hu, Jinli Meng, Rongjun Wang, Lianyun Jiang, Heyong Han, Jingfeng Zou, Qingxue Huang
  • Publication number: 20200357616
    Abstract: Embodiments of the invention generally provide a processing chamber used to perform a physical vapor deposition (PVD) process and methods of depositing multi-compositional films. The processing chamber may include: an improved RF feed configuration to reduce any standing wave effects; an improved magnetron design to enhance RF plasma uniformity, deposited film composition and thickness uniformity; an improved substrate biasing configuration to improve process control; and an improved process kit design to improve RF field uniformity near the critical surfaces of the substrate. The method includes forming a plasma in a processing region of a chamber using an RF supply coupled to a multi-compositional target, translating a magnetron relative to the multi-compositional target, wherein the magnetron is positioned in a first position relative to a center point of the multi-compositional target while the magnetron is translating and the plasma is formed, and depositing a multi-compositional film on a substrate.
    Type: Application
    Filed: July 24, 2020
    Publication date: November 12, 2020
    Inventors: Adolph Miller ALLEN, Lara HAWRYLCHAK, Zhigang XIE, Muhammad M. RASHEED, Rongjun WANG, Xianmin TANG, Zhendong LIU, Tza-Jing GUNG, Srinivas GANDIKOTA, Mei CHANG, Michael S. COX, Donny YOUNG, Kirankumar SAVANDAIAH, Zhenbin GE
  • Patent number: 10763090
    Abstract: Embodiments of the invention generally provide a processing chamber used to perform a physical vapor deposition (PVD) process and methods of depositing multi-compositional films. The processing chamber may include: an improved RF feed configuration to reduce any standing wave effects; an improved magnetron design to enhance RF plasma uniformity, deposited film composition and thickness uniformity; an improved substrate biasing configuration to improve process control; and an improved process kit design to improve RF field uniformity near the critical surfaces of the substrate.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: September 1, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Adolph Miller Allen, Lara Hawrylchak, Zhigang Xie, Muhammad M. Rasheed, Rongjun Wang, Xianmin Tang, Zhendong Liu, Tza-Jing Gung, Srinivas Gandikota, Mei Chang, Michael S. Cox, Donny Young, Kirankumar Savandaiah, Zhenbin Ge
  • Patent number: 10744558
    Abstract: A magnesium alloy cast-rolling unit, including: a main body; a fluid supplier; an electric pushrod; a linkage mechanism; a horizontal platform; a screw; dovetail guide rails; and a bottom plate. The main body includes a base, a spring cylinder, a hydraulic adjustment cylinder, a connection portion, and a cast-rolling unit body. The connection portion includes an arc-shaped rail. The spring cylinder includes an actuation element. The actuation element includes a piston rod and a pressure strip. The piston rod includes an external thread at one end; and the pressure strip includes an internal thread corresponding to the external thread. The fluid supplier includes a head box, a corrugated pipe, a compression spring assembly including a gland cover, a connection pipe including a convex pipe joint and a concave pipe joint, a flat plate including a groove, a smelting furnace, and a horizontal operation platform.
    Type: Grant
    Filed: September 2, 2019
    Date of Patent: August 18, 2020
    Assignee: TAIYUAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Lifeng Ma, Jingfeng Zou, Rongjun Wang, Xiao Hu, Zhiquan Huang, Qingxue Huang, Guangming Liu, Yanchun Zhu
  • Publication number: 20200259078
    Abstract: Embodiments of the disclosure provide methods for forming MTJ structures from a film stack disposed on a substrate for MRAM applications and associated MTJ devices. The methods described herein include forming the film properties of material layers from the film stack to create a film stack with a sufficiently high perpendicular magnetic anisotropy (PMA). An iron containing oxide capping layer is utilized to generate the desirable PMA. By utilizing an iron containing oxide capping layer, thickness of the capping layer can be more finely controlled and reliance on boron at the interface of the magnetic storage layer and the capping layer is reduced.
    Type: Application
    Filed: April 27, 2020
    Publication date: August 13, 2020
    Inventors: Lin XUE, Chi Hong CHING, Xiaodong WANG, Mahendra PAKALA, Rongjun WANG
  • Patent number: 10718049
    Abstract: Apparatus for improved particle reduction are provided herein. In some embodiments, an apparatus may include a process kit shield comprising a one-piece metal body having an upper portion and a lower portion and having an opening disposed through the one-piece metal body, wherein the upper portion includes an opening-facing surface configured to be disposed about and spaced apart from a target of a physical vapor deposition chamber and wherein the opening-facing surface is configured to limit particle deposition on an upper surface of the upper portion of the one-piece metal body during sputtering of a target material from the target of the physical vapor deposition chamber.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: July 21, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Muhammad Rasheed, Rongjun Wang, Zhendong Liu, Xinyu Fu, Xianmin Tang
  • Patent number: 10704139
    Abstract: Methods and apparatus for reducing defects in a workpiece are provided herein. In some embodiments, a sputter deposition target is provided for reducing defects in a workpiece, the target comprising a dielectric compound having a predefined average grain size ranging from approximately 20 ?m to 200 ?m. In other embodiments, a process chamber is provided, the process chamber comprising a chamber body defining an interior volume, a substrate support to support a substrate within the interior volume, a plurality of targets to be sputtered onto the substrate including at least one dielectric target, wherein the dielectric target comprises a dielectric compound having a predefined average grain size ranging from approximately 20 ?m to 200 ?m and a shield rotatably coupled to an upper portion of the chamber body and having at least one hole to expose at least one of the plurality of targets to be sputtered.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: July 7, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xiaodong Wang, Rongjun Wang, Hanbing Wu
  • Publication number: 20200212421
    Abstract: A short stress path-type electrode sheet rolling machine and an integrated machine equipment for manufacturing lithium battery electrode sheets, whereby the rolling machine comprises: an upper roller mechanism, a lower roller mechanism, an upper bearing base, a lower bearing base and a roller-gap adjusting mechanism; the upper roller mechanism is connected to the upper bearing base, and the lower roller mechanism is connected to the lower bearing base; the upper bearing base and the lower bearing base are connected by means of a guide shaft; the roller-gap adjusting mechanism is connected to the upper roller mechanism so as to adjust a roller gap between the upper roller mechanism and the lower roller mechanism. The rolling machine has a simpler and more reliable structure, has a shorter stress return path when performing electrode sheet rolling, and may improve rolling precision and rolling quality.
    Type: Application
    Filed: June 11, 2018
    Publication date: July 2, 2020
    Inventors: Xiaozhong DU, Rongjun WANG, Jinpeng WANG, Yanjie ZHANG, Yang TONG, Yiling YUE, Jiamin ZHANG
  • Publication number: 20200203144
    Abstract: Methods and apparatus for reducing arcing of a silicon oxide layer in a film stack are provided. In some embodiments a method for reducing arcing of a silicon oxide layer in a film stack includes: depositing a silicon oxide layer having a top surface atop a low-k dielectric layer, wherein the silicon oxide layer and low-k dielectric layer are disposed upon a substrate and within a film stack; contacting the silicon oxide layer with argon plasma in an amount sufficient to clean the silicon oxide layer; and depositing a nitride layer atop the silicon oxide layer.
    Type: Application
    Filed: March 29, 2019
    Publication date: June 25, 2020
    Inventors: CHAO DU, VAIBHAV SONI, LIN TL, YONG CAO, MINGDONG LI, MINGTE LIU, CHEN GONG, XIAODONG WANG, RONGJUN WANG, XIANMIN TANG
  • Patent number: 10665426
    Abstract: Methods are disclosed for depositing a thin film of compound material on a substrate. In some embodiments, a method of depositing a layer of compound material on a substrate include: flowing a reactive gas into a plasma processing chamber having a substrate to be sputter deposited disposed therein in opposition to a sputter target comprising a metal; exciting the reactive gas into a reactive gas plasma to react with the sputter target and to form a first layer of compound material thereon; flowing an inert gas into the plasma processing chamber; and exciting the inert gas into a plasma to sputter a second layer of the compound material onto the substrate directly from the first layer of compound material. The cycles of target poisoning and sputtering may be repeated until a compound material layer of appropriate thickness has been formed on the substrate.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: May 26, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yana Cheng, Zhefeng Li, Chi Hong Ching, Yong Cao, Rongjun Wang
  • Publication number: 20200160884
    Abstract: Embodiments herein provide film stacks that include a buffer layer; a synthetic ferrimagnet (SyF) coupling layer; and a capping layer, wherein the capping layer comprises one or more layers, and wherein the capping layer, the buffer layer, the SyF coupling layer, or a combination thereof, is not fabricated from Ru.
    Type: Application
    Filed: January 27, 2020
    Publication date: May 21, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Lin XUE, Chi Hong CHING, Jaesoo AHN, Mahendra PAKALA, Rongjun WANG
  • Patent number: 10636964
    Abstract: Embodiments of the disclosure provide methods for forming MTJ structures from a film stack disposed on a substrate for MRAM applications and associated MTJ devices. The methods described herein include forming the film properties of material layers from the film stack to create a film stack with a sufficiently high perpendicular magnetic anisotropy (PMA). An iron containing oxide capping layer is utilized to generate the desirable PMA. By utilizing an iron containing oxide capping layer, thickness of the capping layer can be more finely controlled and reliance on boron at the interface of the magnetic storage layer and the capping layer is reduced.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: April 28, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Lin Xue, Chi Hong Ching, Xiaodong Wang, Mahendra Pakala, Rongjun Wang
  • Publication number: 20200127164
    Abstract: Oxygen controlled PVD AlN buffers for GaN-based optoelectronic and electronic devices is described. Methods of forming a PVD AlN buffer for GaN-based optoelectronic and electronic devices in an oxygen controlled manner are also described. In an example, a method of forming an aluminum nitride (AlN) buffer layer for GaN-based optoelectronic or electronic devices involves reactive sputtering an AlN layer above a substrate, the reactive sputtering involving reacting an aluminum-containing target housed in a physical vapor deposition (PVD) chamber with a nitrogen-containing gas or a plasma based on a nitrogen-containing gas. The method further involves incorporating oxygen into the AlN layer.
    Type: Application
    Filed: December 19, 2019
    Publication date: April 23, 2020
    Inventors: Mingwei Zhu, Nag B. Patibandla, Rongjun Wang, Daniel Lee Diehl, Vivek Agrawal, Anantha Subramani