Patents by Inventor Rui CHENG

Rui CHENG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220341034
    Abstract: Exemplary deposition methods may include delivering a boron-containing precursor to a processing region of a semiconductor processing chamber. The methods may include delivering a dopant-containing precursor with the boron-containing precursor. The dopant-containing precursor may include a metal. The methods may include forming a plasma of all precursors within the processing region of the semiconductor processing chamber. The methods may include depositing a doped-boron material on a substrate disposed within the processing region of the semiconductor processing chamber. The doped-boron material may include greater than or about 80 at. % of boron in the doped-boron material.
    Type: Application
    Filed: April 26, 2021
    Publication date: October 27, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Aykut Aydin, Rui Cheng, Karthik Janakiraman
  • Patent number: 11462630
    Abstract: Embodiments described herein generally relate to doping of three dimensional (3D) structures on a substrate. In some embodiments, a conformal dopant containing film may be deposited over the 3D structures. Suitable dopants that may be incorporated in the film include halogen atoms. The film may be subsequently annealed to diffuse the dopants into the 3D structures.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: October 4, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rui Cheng, Yi Yang, Karthik Janakiraman, Abhijit Basu Mallick
  • Publication number: 20220310448
    Abstract: Embodiments of the present disclosure relate to processes for filling trenches. The process includes depositing a first amorphous silicon layer on a surface of a layer and a second amorphous silicon layer in a portion of a trench formed in the layer, and portions of side walls of the trench are exposed. The first amorphous silicon layer is removed. The process further includes depositing a third amorphous silicon layer on the surface of the layer and a fourth amorphous silicon layer on the second amorphous silicon layer. The third amorphous silicon layer is removed. The deposition/removal cyclic processes may be repeated until the trench is filled with amorphous silicon layers. The amorphous silicon layers form a seamless amorphous silicon gap fill in the trench since the amorphous silicon layers are formed from bottom up.
    Type: Application
    Filed: June 13, 2022
    Publication date: September 29, 2022
    Inventors: Xin LIU, Fei WANG, Rui CHENG, Abhijit Basu MALLICK, Robert Jan VISSER
  • Patent number: 11456173
    Abstract: Embodiments for processing a substrate are provided and include a method of trimming photoresist to provide photoresist profiles with smooth sidewall surfaces and to tune critical dimensions (CD) for the patterned features and/or a subsequently deposited dielectric layer. The method can include depositing a sacrificial structure layer on the substrate, depositing a photoresist on the sacrificial structure layer, and patterning the photoresist to produce a crude photoresist profile on the sacrificial structure layer. The method also includes trimming the photoresist with a plasma to produce a refined photoresist profile covering a first portion of the sacrificial structure layer while a second portion of the sacrificial structure layer is exposed, etching the second portion of the sacrificial structure layer to form patterned features disposed on the substrate, and depositing a dielectric layer on the patterned features.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: September 27, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Meenakshi Gupta, Rui Cheng, Srinivas Guggilla, Karthik Janakiraman, Diwakar N. Kedlaya, Zubin Huang
  • Patent number: 11443919
    Abstract: Systems and methods of using pulsed RF plasma to form amorphous and microcrystalline films are discussed herein. Methods of forming films can include (a) forming a plasma in a process chamber from a film precursor and (b) pulsing an RF power source to cause a duty cycle on time (TON) of a duty cycle of a pulse generated by the RF power source to be less than about 20% of a total cycle time (TTOT) of the duty cycle to form the film. The methods can further include (c) depositing a first film interlayer on a substrate in the process chamber; (d) subsequent to (c), purging the process chamber; and (e) subsequent to (d), introducing a hydrogen plasma to the process chamber. Further in the method, (b)-(e) are repeated to form a film. The film can have an in-film hydrogen content of less than about 10%.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: September 13, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Krishna Nittala, Diwakar N. Kedlaya, Karthik Janakiraman, Yi Yang, Rui Cheng
  • Publication number: 20220285232
    Abstract: Methods and systems for controlling concentration profiles of deposited films using machine learning are provided. Data associated with a target concentration profile for a film to be deposited on a surface of a substrate during a deposition process for the substrate is provided as input to a trained machine learning model. One or more outputs of the trained machine learning model are obtained. Process recipe data identifying one or more sets of deposition process settings is determined from the one or more outputs. For each set of deposition process setting, an indication of a level of confidence that a respective set of deposition process settings corresponds to the target concentration profile for the film to be deposited on the substrate is also determined.
    Type: Application
    Filed: March 3, 2021
    Publication date: September 8, 2022
    Inventors: Anton V. Baryshnikov, Aykut Aydin, Zubin Huang, Rui Cheng, Yi Yang, Diwakar Kedlaya, Venkatanarayana Shankaramurthy, Krishna Nittala, Karthik Janakiraman
  • Publication number: 20220246432
    Abstract: Methods of doping a semiconductor material are disclosed. Some embodiments provide for conformal doping of three dimensional structures. Some embodiments provide for doping with high concentrations of boron for p-type doping.
    Type: Application
    Filed: April 20, 2022
    Publication date: August 4, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Srinivas Gandikota, Abhijit Basu Mallick, Swaminathan Srinivasan, Rui Cheng, Susmit Singha Roy, Gaurav Thareja, Mukund Srinivasan, Sanjay Natarajan
  • Publication number: 20220238331
    Abstract: Methods for gap filling features of a substrate surface are described. Each of the features extends a distance into the substrate from the substrate surface and have a bottom and at least one sidewall. The methods include depositing a non-conformal film in the feature of the substrate surface with a plurality of high-frequency ratio-frequency (HFRF) pulses. The non-conformal film has a greater thickness on the bottom of the features than on the at least one sidewall. The deposited film is substantially etched from the sidewalls of the feature. The deposition and etch processes are repeated to fill the features.
    Type: Application
    Filed: January 25, 2021
    Publication date: July 28, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Aykut Aydin, Rui Cheng, Shishi Jiang, Karthik Janakiraman
  • Publication number: 20220199373
    Abstract: Exemplary semiconductor processing chambers include a chamber body defining a processing region. The chambers may include a substrate support disposed within the processing region. The substrate support may have an upper surface that defines a recessed substrate seat. The chambers may include a shadow ring disposed above the substrate seat and the upper surface. The shadow ring may extend about a peripheral edge of the substrate seat. The chambers may include bevel purge openings defined within the substrate support proximate the peripheral edge. A bottom surface of the shadow ring may be spaced apart from a top surface of the upper surface to form a purge gas flow path that extends from the bevel purge openings along the shadow ring. A space formed between the shadow ring and the substrate seat may define a process gas flow path. The gas flow paths may be in fluid communication with one another.
    Type: Application
    Filed: December 18, 2020
    Publication date: June 23, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Venkata Sharat Chandra Parimi, Zubin Huang, Manjunath Veerappa Chobari Patil, Nitin Pathak, Yi Yang, Badri N. Ramamurthi, Truong Van Nguyen, Rui Cheng, Diwakar Kedlaya
  • Publication number: 20220199404
    Abstract: Exemplary deposition methods may include flowing a silicon-containing precursor into a processing region of a semiconductor processing chamber. The method may include striking a plasma in the processing region between a faceplate and a pedestal of the semiconductor processing chamber. The pedestal may support a substrate including a patterned photoresist. The method may include maintaining a temperature of the substrate less than or about 200° C. The method may also include depositing a silicon-containing film along the patterned photoresist.
    Type: Application
    Filed: December 17, 2020
    Publication date: June 23, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Aykut Aydin, Rui Cheng, Karthik Janakiraman
  • Patent number: 11361991
    Abstract: Embodiments of the present disclosure relate to processes for filling trenches. The process includes depositing a first amorphous silicon layer on a surface of a layer and a second amorphous silicon layer in a portion of a trench formed in the layer, and portions of side walls of the trench are exposed. The first amorphous silicon layer is removed. The process further includes depositing a third amorphous silicon layer on the surface of the layer and a fourth amorphous silicon layer on the second amorphous silicon layer. The third amorphous silicon layer is removed. The deposition/removal cyclic processes may be repeated until the trench is filled with amorphous silicon layers. The amorphous silicon layers form a seamless amorphous silicon gap fill in the trench since the amorphous silicon layers are formed from bottom up.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: June 14, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Xin Liu, Fei Wang, Rui Cheng, Abhijit Basu Mallick, Robert Jan Visser
  • Patent number: 11335555
    Abstract: Methods of conformally doping three dimensional structures are discussed. Some embodiments utilize conformal silicon films deposited on the structures. The silicon films are doped after deposition to comprise halogen atoms. The structures are then annealed to dope the structures with halogen atoms from the doped silicon films.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: May 17, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rui Cheng, Yi Yang, Karthik Janakiraman
  • Patent number: 11328928
    Abstract: Methods of doping a semiconductor material are disclosed. Some embodiments provide for conformal doping of three dimensional structures. Some embodiments provide for doping with high concentrations of boron for p-type doping.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: May 10, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Srinivas Gandikota, Abhijit Basu Mallick, Swaminathan Srinivasan, Rui Cheng, Susmit Singha Roy, Gaurav Thareja, Mukund Srinivasan, Sanjay Natarajan
  • Patent number: 11315787
    Abstract: The present disclosure provides forming nanostructures utilizing multiple patterning process with good profile control and feature transfer integrity. In one embodiment, a method for forming features on a substrate includes forming a mandrel layer on a substrate, conformally forming a spacer layer on the mandrel layer, wherein the spacer layer is a doped silicon material, and patterning the spacer layer. In another embodiment, a method for forming features on a substrate includes conformally forming a spacer layer on a mandrel layer on a substrate, wherein the spacer layer is a doped silicon material, selectively removing a portion of the spacer layer using a first gas mixture, and selectively removing the mandrel layer using a second gas mixture different from the first gas mixture.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: April 26, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Tzu-shun Yang, Rui Cheng, Karthik Janakiraman, Zubin Huang, Diwakar Kedlaya, Meenakshi Gupta, Srinivas Guggilla, Yung-chen Lin, Hidetaka Oshio, Chao Li, Gene Lee
  • Publication number: 20220108892
    Abstract: Embodiments of the present technology include semiconductor processing methods to make boron-and-silicon-containing layers that have a changing atomic ratio of boron-to-silicon. The methods may include flowing a silicon-containing precursor into a substrate processing region of a semiconductor processing chamber, and also flowing a boron-containing precursor and molecular hydrogen (H2) into the substrate processing region of the semiconductor processing chamber. The boron-containing precursor and the H2 may be flowed at a boron-to-hydrogen flow rate ratio. The flow rate of the boron-containing precursor and the H2 may be increased while the boron-to-hydrogen flow rate ratio remains constant during the flow rate increase. The boron-and-silicon-containing layer may be deposited on a substrate, and may be characterized by a continuously increasing ratio of boron-to-silicon from a first surface in contact with the substrate to a second surface of the boron-and-silicon-containing layer furthest from the substrate.
    Type: Application
    Filed: October 5, 2020
    Publication date: April 7, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Yi Yang, Krishna Nittala, Rui Cheng, Karthik Janakiraman, Diwakar Kedlaya, Zubin Huang, Aykut Aydin
  • Publication number: 20220108872
    Abstract: Exemplary semiconductor processing systems may include a chamber body comprising sidewalls and a base. The systems may include a substrate support extending through the base of the chamber body. The substrate support may include a support plate defining a plurality of channels through an interior of the support plate. Each channel of the plurality of channels may include a radial portion extending outward from a central channel through the support plate. Each channel may also include a vertical portion formed at an exterior region of the support plate fluidly coupling the radial portion with a support surface of the support plate. The substrate support may include a shaft coupled with the support plate. The central channel may extend through the shaft. The systems may include a fluid source coupled with the central channel of the substrate support.
    Type: Application
    Filed: October 5, 2020
    Publication date: April 7, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Zubin Huang, Diwakar Kedlaya, Rui Cheng, Truong Van Nguyen, Manjunath Patil, Pavan Kumar Murali Kumar, Subrahmanyam Veerisetty, Karthik Janakiraman
  • Publication number: 20220093390
    Abstract: Exemplary deposition methods may include delivering a silicon-containing precursor and a boron-containing precursor to a processing region of a semiconductor processing chamber. The methods may include delivering a dopant-containing precursor with the silicon-containing precursor and the boron-containing precursor. The dopant-containing precursor may include one or more of carbon, nitrogen, oxygen, or sulfur. The methods may include forming a plasma of all precursors within the processing region of the semiconductor processing chamber. The methods may include depositing a silicon-and-boron material on a substrate disposed within the processing region of the semiconductor processing chamber. The silicon-and-boron material may include greater than or about 1 at. % of a dopant from the dopant-containing precursor.
    Type: Application
    Filed: September 18, 2020
    Publication date: March 24, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Aykut Aydin, Rui Cheng, Yi Yang, Krishna Nittala, Karthik Janakiraman, Bo Qi, Abhijit Basu Mallick
  • Publication number: 20220093371
    Abstract: Exemplary semiconductor processing systems include a chamber body having sidewalls and a base. The systems may include a substrate support extending through the base. The substrate support may include a support plate defining lift pin locations and a shaft coupled with the support plate. The systems may include a shield coupled with the shaft and extending below the support plate. The shield may define a central aperture that extends beyond an outer periphery of the shaft. The systems may include a purge baffle coupled with the shield at a position that is beyond the central aperture such that a space between the purge baffle and the shaft is in fluid communication with a space between the shield and the support plate. The purge baffle may extend along at least a portion of the shaft. The systems may include a purge gas source coupled with the purge baffle.
    Type: Application
    Filed: September 21, 2020
    Publication date: March 24, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Zubin Huang, Truong Van Nguyen, Rui Cheng, Diwakar Kedlaya, Manjunath Veerappa Chobari Patil, Prashant A. Desai, Paul L. Brillhart, Karthik Janakiraman, Pavan Kumar Murali Kumar
  • Patent number: 11244824
    Abstract: Methods for depositing a metal film on a doped amorphous silicon layer as a nucleation layer and/or a glue layer on a substrate. Some embodiments further comprise the incorporation of a glue layer to increase the ability of the doped amorphous silicon layer and metal layer to stick to the substrate.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: February 8, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rui Cheng, Yihong Chen, Yong Wu, Abhijit Basu Mallick, Srinivas Gandikota
  • Patent number: 11236418
    Abstract: Methods for gapfill of high aspect ratio features are described. A first film is deposited on the bottom and upper sidewalls of a feature. The first film is etched from the sidewalls of the feature and the first film in the bottom of the feature is treated to form a second film. The deposition, etch and treat processes are repeated to fill the feature.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: February 1, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rui Cheng, Abhijit Basu Mallick, Pramit Manna