Patents by Inventor Ryo Hayashi

Ryo Hayashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050150773
    Abstract: A method for forming a deposition film from an aqueous solution by electrochemical reaction includes the steps of: forming the targeted deposition film under primary deposition conditions; replacing at least part of members in contact with the solution or removing deposit on surfaces of the members; and depositing a film under secondary deposition conditions. These steps are performed in that order. Then, the deposition film is formed again under the primary deposition conditions. In the method, the resulting deposition film exhibits desired characteristics even after maintenance of the deposition apparatus.
    Type: Application
    Filed: December 1, 2004
    Publication date: July 14, 2005
    Applicant: Canon Kabushiki Kaisha
    Inventors: Satoru Yamada, Noboru Toyama, Ryo Hayashi, Yuichi Sonoda, Tomonori Nishimoto, Masumitsu Iwata, Yusuke Miyamoto, Takaharu Kondo
  • Patent number: 6858308
    Abstract: The invention provides a semiconductor element having a semiconductor junction composed of silicon-based films, at least one of the silicon-based films containing a microcrystal. The microcrystal is located in at least one interface region of the silicon-based film containing the microcrystal and has no orientation property. Further, the invention provides a semiconductor element having a semiconductor junction composed of silicon-based films, at least one of the silicon-based films containing a microcrystal, and the orientation property of the microcrystal changing in a film thickness direction of the silicon-based film containing the microcrystal. Thereby, a silicon-based film having a shortened tact time, an increased film forming rate, and excellent characteristics, and a semiconductor element including this silicon-based film having excellent adhesion and environmental resistance can be obtained.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: February 22, 2005
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takaharu Kondo, Shotaro Okabe, Masafumi Sano, Akira Sakai, Ryo Hayashi, Shuichiro Sugiyama
  • Patent number: 6855621
    Abstract: The method of the present invention is a method of forming a silicon-based semiconductor layer by introducing a source gas into a vacuum vessel and forming a silicon-based semiconductor layer containing a microcrystal on a substrate introduced into the vacuum vessel by plasma CVD, which comprises a first step of forming a first region with a source gas containing halogen atoms, and a second step of forming a second region on the first region under a condition where the source gas containing halogen atoms in the second step is lower in gas concentration than that of the first step, thereby providing a method of forming a silicon-based semiconductor layer having an excellent photoelectric characteristic at a film forming rate of an industrially practical level and a photovoltaic element using the silicon-based semiconductor layer formed by the method.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: February 15, 2005
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takaharu Kondo, Masafumi Sano, Akira Sakai, Yasuyoshi Takai, Ryo Hayashi, Toshihiro Yamashita
  • Publication number: 20040191949
    Abstract: A film of zinc oxide electrochemically deposited from an aqueous solution is subjected to heat treatment at a temperature equal to or higher than 150° C. and equal to or lower than 400° C. in a nitrogen or inert gas atmosphere that contains oxygen, thereby obtaining a zinc oxide film that is low in electric resistance without impairing the light transmittance of the zinc oxide film.
    Type: Application
    Filed: March 22, 2004
    Publication date: September 30, 2004
    Applicant: Canon Kabushiki Kaisha
    Inventors: Masumitsu Iwata, Noboru Toyama, Ryo Hayashi, Yuichi Sonoda, Tomonori Nishimoto, Takaharu Kondo, Satoru Yamada, Yusuke Miyamoto
  • Patent number: 6794275
    Abstract: In a process for forming a silicon-based film on a substrate according to the present invention, the substrate has a temperature gradient in the thickness direction thereof in the formation of the silicon-based film and the temperature gradient is made such that a deposition surface of the substrate has a higher temperature than a backside or the direction of the temperature gradient is reversed. With this configuration, the present invention provides a silicon-based thin film having good properties at a high deposition rate and provides a semiconductor device including it. The present invention also provides a semiconductor device including the silicon-based thin films that has good adhesion and weather-resisting properties and that can be manufactured in a short tact time.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: September 21, 2004
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takaharu Kondo, Shotaro Okabe, Masafumi Sano, Akira Sakai, Yuzo Koda, Ryo Hayashi, Shuichiro Sugiyama, Koichiro Moriyama
  • Patent number: 6737123
    Abstract: A silicon-based film is formed superimposing a direct-current potential on the high-frequency power to set the potential of the high-frequency power feed section to a potential which is lower by V1 than the ground potential; the V1 satisfying |V2|≦|V1|≦50×|V2|, where V2 is the potential difference from the ground potential, produced in the electrode in the state the plasma has taken place under the same conditions except that the direct-current potential is not superposed on the high-frequency power and the electrode is brought into a non-grounded state. This can provide a silicon-based film having superior characteristics at a high film formation rate, and a semiconductor device making use of this silicon-based film, having superior adherence, environmental resistance, and can enjoy a short tact time at the time of manufacture.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: May 18, 2004
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takaharu Kondo, Masafumi Sano, Akira Sakai, Tadashi Sawayama, Ryo Hayashi, Shuichiro Sugiyama, Hiroyuki Ozaki, Yoshinori Sugiura
  • Publication number: 20040011655
    Abstract: A plating apparatus includes a plating vessel for holding a plating bath containing at least metal ions, a conveying device for conveying a long conductive substrate and immersing the long conductive substrate in the plating bath, a facing electrode disposed in the plating bath so as to face one surface of the conductive substrate, a voltage application device for performing plating on the one surface of the conductive substrate by applying a voltage between the conductive substrate and the facing electrode, and a film-deposition suppression device fixedly disposed in the plating vessel so that at least a portion of the film-deposition suppression means is close to shorter-direction edges of the conductive substrate. At least a portion of the film-deposition suppression device close to the shorter-direction edges of the conductive substrate is conductive.
    Type: Application
    Filed: June 27, 2003
    Publication date: January 22, 2004
    Inventors: Hidetoshi Tsuzuki, Noboru Toyama, Yasuyoshi Takai, Ryo Hayashi, Yuichi Sonoda, Masumitsu Iwata, Yusuke Miyamoto
  • Publication number: 20040011290
    Abstract: A deposited film-forming apparatus by means of high frequency plasma CVD and having a power application electrode arranged in a film-forming vacuum vessel, a high frequency power source connected to said power application electrode, a direct current power source which is connected to said power application electrode and is connected with said high frequency power source in parallel connection, a detector for detecting a symptom of occurrence of arc discharge, and an arc discharge preventive means for preventing occurrence of arc discharge based on said symptom of occurrence of arc discharge which is detected by said detector, wherein said arc discharge preventive means is connected between said power application electrode and said direct current power source such that said arc discharge preventive means is connected with said direct current power source in series connection and is connected with said high frequency power source in parallel connection.
    Type: Application
    Filed: June 10, 2003
    Publication date: January 22, 2004
    Inventors: Takaharu Kondo, Shotaro Okabe, Akira Sakai, Tadashi Sawayama, Ryo Hayashi, Hiroyki Ozaki, Tetsuya Kimura, Takeshi Shishido
  • Publication number: 20030153165
    Abstract: The method of the present invention is a method of forming a silicon-based semiconductor layer by introducing a source gas into a vacuum vessel and forming a silicon-based semiconductor layer containing a microcrystal on a substrate introduced into the vacuum vessel by plasma CVD, which comprises a first step of forming a first region with a source gas containing halogen atoms, and a second step of forming a second region on the first region under a condition where the source gas containing halogen atoms in the second step is lower in gas concentration than that of the first step, thereby providing a method of forming a silicon-based semiconductor layer having an excellent photoelectric characteristic at a film forming rate of an industrially practical level and a photovoltaic element using the silicon-based semiconductor layer formed by the method.
    Type: Application
    Filed: October 24, 2001
    Publication date: August 14, 2003
    Inventors: Takaharu Kondo, Masafumi Sano, Akira Sakai, Yasuyoshi Takai, Ryo Hayashi, Toshihiro Yamashita
  • Publication number: 20030143822
    Abstract: A silicon-based film is formed superimposing a direct-current potential on the high-frequency power to set the potential of the high-frequency power feed section to a potential which is lower by V1 than the ground potential; the V1 satisfying |V2|≦|V1|≦50×|V2|, where V2 is the potential difference from the ground potential, produced in the electrode in the state the plasma has taken place under the same conditions except that the direct-current potential is not superposed on the high-frequency power and the electrode is brought into a non-grounded state. This can provide a silicon-based film having superior characteristics at a high film formation rate, and a semiconductor device making use of this silicon-based film, having superior adherence, environmental resistance, and can enjoy a short tact time at the time of manufacture.
    Type: Application
    Filed: June 12, 2002
    Publication date: July 31, 2003
    Inventors: Takaharu Kondo, Masafumi Sano, Akira Sakai, Tadashi Sawayama, Ryo Hayashi, Shuichiro Sugiyama, Hiroyuki Ozaki, Yoshinori Sugiura
  • Publication number: 20030104664
    Abstract: In a process for forming a silicon-based film on a substrate according to the present invention, the substrate has a temperature gradient in the thickness direction thereof in the formation of the silicon-based film and the temperature gradient is made such that a deposition surface of the substrate has a higher temperature than a backside or the direction of the temperature gradient is reversed. With this configuration, the present invention provides a silicon-based thin film having good properties at a high deposition rate and provide a semiconductor device including it. The present invention also provides a semiconductor device including the silicon-based thin films that has good adhesion and weather-resisting properties and that can be manufactured in a short tact time.
    Type: Application
    Filed: April 2, 2002
    Publication date: June 5, 2003
    Inventors: Takaharu Kondo, Shotaro Okabe, Masafumi Sano, Akira Sakai, Yuzo Koda, Ryo Hayashi, Shuichiro Sugiyama, Koichiro Moriyama
  • Publication number: 20030075717
    Abstract: The present invention provides a semiconductor element comprising a semiconductor junction composed of silicon-based films, the element being characterized in that at least one of the silicon-based films contains a microcrystal, and microcrystal located in at least one interface region of the silicon-based films containing the microcrystal has no orientation property. Further, the present invention provides a semiconductor element comprising a semiconductor junction composed of silicon-based films, wherein at least one of the silicon-based films contains a microcrystal, and the orientation property of the microcrystal in the silicon-based film containing the microcrystal changes in a film thickness direction of the silicon-based film containing the microcrystal.
    Type: Application
    Filed: March 8, 2002
    Publication date: April 24, 2003
    Inventors: Takaharu Kondo, Shotaro Okabe, Masafumi Sano, Akira Sakai, Ryo Hayashi, Shuichiro Sugiyama
  • Patent number: 6365308
    Abstract: In order to maintain excellent electrical, optical and photoconductive characteristics and to significantly improve the durability under adverse environments, a light receiving member for electrophotography according to the present invention comprises in sequence: a supporting member and a light receiving layer; said light receiving layer comprising in sequence at least a photoconductive layer and a surface layer thereon, said photoconductive layer comprising a non-single-crystal material containing silicon atoms as a matrix, and said surface layer comprising an amorphous material containing silicon atoms and carbon atoms as a matrix, wherein the carbon atoms are at least diamond-bonded and graphite-bonded, and wherein from 2% to 30% by number of the carbon atoms are graphite-bonded.
    Type: Grant
    Filed: October 29, 1997
    Date of Patent: April 2, 2002
    Assignee: Canon Kabushiki Kaisha
    Inventors: Satoshi Kojima, Keishi Saito, Hirokazu Ohtoshi, Masafumi Sano, Junichiro Hashizume, Yasuyoshi Takai, Ryo Hayashi, Masahiko Tonogaki
  • Patent number: 6331474
    Abstract: A defect compensation method for a semiconductor element to compensate for defects of the semiconductor element, in which hot water is conducted with the semiconductor element to accomplish defect compensation. On the basis of this treatment, excessive progress of oxidation of the crystal grain boundary and retention of water and OH− groups in the film are provented.
    Type: Grant
    Filed: August 1, 2000
    Date of Patent: December 18, 2001
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ryo Hayashi, Keishi Saito
  • Patent number: 6132817
    Abstract: A method of manufacturing a photoelectric transducer forms a functional film on a conductive substrate. The method comprises applying ultrasonic cleaning with a cleaning liquid containing water to the conductive substrate, then allowing the surface of the conductive substrate to contact purified water so as to import uniform oxidation and then forming the functional film thereon. The functional film is characterized in being formed with a metal layer as light-reflecting layer, a reflection enhancing layer, and a semiconductor photovoltaic device layer, prepared by a plasma CVD method, comprising a non-monocrystalline material containing silicon atoms as the matrix.
    Type: Grant
    Filed: March 19, 1997
    Date of Patent: October 17, 2000
    Assignee: Canon Kabushiki Kaisha
    Inventors: Nobuo Tokutake, Masafumi Sano, Ryo Hayashi, Makoto Higashikawa
  • Patent number: 6054024
    Abstract: There are provided a method which, in forming a transparent conductive film by sputtering on a semiconductor junction layer provided on a conductive substrate which bears at least the transparent conductive film thereon, comprises steps of electrically insulating the conductive substrate, and maintaining the self bias voltage Vself of the conductive substrate within a range of -50 V.ltoreq.Vself<0 V, and an apparatus therefor. There can also be reduced the damage to the semiconductor layer, induced by the cations such as Ar.sup.+. Thus there can be produced the photovoltaic elements of a high open-circuit voltage and a high photoelectric conversion efficiency in stable manner.
    Type: Grant
    Filed: September 10, 1997
    Date of Patent: April 25, 2000
    Assignee: Canon Kabushiki Kaisha
    Inventors: Noboru Toyama, Keishi Saito, Ryo Hayashi, Yukiko Iwasaki
  • Patent number: 5720826
    Abstract: Provided are a photovoltaic element suitable for practical use, low in cost, high in reliability, and high in photoelectric conversion efficiency, and a fabrication process thereof. In the photovoltaic element having stacked layers of non-single-crystal semiconductors, at least an i-type semiconductor layer and a second conductivity type semiconductor layer are stacked on a first conductivity type semiconductor layer, and the second conduction type semiconductor layer has a layer A formed by exposing the surface of the i-type semiconductor layer to a plasma containing a valence electron controlling agent and a layer B deposited on the layer A by a CVD process using at least the valence electron controlling agent and the main constituent elements of the i-type semiconductor layer.
    Type: Grant
    Filed: May 29, 1996
    Date of Patent: February 24, 1998
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ryo Hayashi, Yasushi Fujioka, Shotaro Okabe, Masahiro Kanai, Jinsho Matsuyama, Akira Sakai, Yuzo Koda, Tadashi Hori, Takahiro Yajima
  • Patent number: 5716480
    Abstract: A photovoltaic device having a pin type semiconductor junction in which a p-type semiconductor layer and an n-type semiconductor layer are laminated with an interposed i-type semiconductor layer, comprises at least one doped layer of a non-monocrystal semiconductor disposed under and/or over the i-type semiconductor layer, wherein the at least one doped layer has a surface exposed to a plasma containing a band gap increasing element.
    Type: Grant
    Filed: July 11, 1996
    Date of Patent: February 10, 1998
    Assignee: Canon Kabushiki Kaisha
    Inventors: Jinsho Matsuyama, Ryo Hayashi
  • Patent number: 5563075
    Abstract: A non-monocrystalline silicon semiconductor device having a pin junction is formed by forming a first doped semiconductor layer of a first conductivity disposed on a substrate. A first intrinsic layer is deposited on the first doped semiconductor layer employing RF energy. A second intrinsic layer is deposited on the first intrinsic layer employing microwave energy and RF energy simultaneously. A semiconductor precursor gas, including germanium and a semiconductor precursor gas including silicon are supplied to the second intrinsic layer during its formation. The content of the semiconductor precursor gas containing germanium is greater than the semiconductor gas including silicon in the layer thickness direction in the second intrinsic layer at a P-layer side. A second doped semiconductor layer is deposited on the second intrinsic layer.
    Type: Grant
    Filed: June 1, 1995
    Date of Patent: October 8, 1996
    Assignee: Canon Kabushiki Kaisha
    Inventors: Keishi Saito, Tatsuyuki Aoike, Masafumi Sano, Mitsuyuki Niwa, Ryo Hayashi, Masahiko Tonogaki
  • Patent number: 5563425
    Abstract: An object of the present invention is to provide a photoelectrical conversion device in which recombination of carriers excited by light is prevented and the open voltage and the carrier range of positive holes are improved and to provide a generating system using the photoelectrical conversion device. The photoelectrical conversion device includes a p-layer, an i-layer, and an n-layer, wherein the photoelectrical conversion device being formed by stacking the p-layer, the i-layer and the n-layer each of which is made of non-single-crystal silicon semiconductor, the i-layer contains germanium atoms, the band gap of the i-layer is smoothly changed in a direction of the thickness of the i-layer, the minimum value of the band gap is positioned adjacent to the p-layer from the central position of the i-layer and both of a valence control agent to serve as a donor and another valence control agent to serve as an acceptor are doped into the i-layer.
    Type: Grant
    Filed: November 10, 1993
    Date of Patent: October 8, 1996
    Assignee: Canon Kabushiki Kaisha
    Inventors: Keishi Saito, Tatsuyuki Aoike, Masafumi Sano, Mitsuyuki Niwa, Ryo Hayashi, Masahiko Tonogaki