Patents by Inventor S. Brad Herner

S. Brad Herner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110210305
    Abstract: A method of programming a carbon nanotube memory cell is provided, wherein the memory cell comprises a first conductor, a steering element, a carbon nanotube fabric, and a second conductor, wherein the steering element and the carbon nanotube fabric are arranged electrically in series between the first conductor and the second conductor, and wherein the entire carbon nanotube memory cell is formed above a substrate, the carbon nanotube fabric having a first resistivity, the method including applying a first electrical set pulse between the first conductor and the second conductor, wherein, after application of the first electrical set pulse, the carbon nanotube fabric has a second resistivity, the second resistivity less than the first resistivity. Other aspects are also provided.
    Type: Application
    Filed: April 11, 2011
    Publication date: September 1, 2011
    Inventors: S. Brad Herner, Roy E. Scheuerlein
  • Patent number: 8008700
    Abstract: A nonvolatile memory device includes at least one memory cell which comprises a first diode portion, a second diode portion and an antifuse separating the first diode portion from the second diode portion.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: August 30, 2011
    Assignee: SanDisk 3D LLC
    Inventors: Tanmay Kumar, S. Brad Herner
  • Patent number: 8004013
    Abstract: A semiconductor device comprising a bipolar transistor having a base region, an emitter region and a collector region, wherein the base region comprises polycrystalline semiconductor material formed by crystallizing silicon, germanium or silicon germanium in contact with a silicide, germanide or silicide germanide is described. The emitter region and collector region also may comprise polycrystalline semiconductor material formed by crystallizing silicon, germanium or silicon germanium in contact with a silicide, germanide or silicide germanide forming metal. The polycrystalline semiconductor material is preferably silicided polysilicon, which is formed in contact with C49 phase titanium silicide.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: August 23, 2011
    Assignee: SanDisk 3D LLC
    Inventors: Christopher J Petti, S. Brad Herner
  • Patent number: 8004033
    Abstract: Nonvolatile memory cells and methods of forming the same are provided, the methods including forming a first conductor at a first height above a substrate; forming a first pillar-shaped semiconductor element above the first conductor, wherein the first pillar-shaped semiconductor element comprises a first heavily doped layer of a first conductivity type, a second lightly doped layer above and in contact with the first heavily doped layer, and a third heavily doped layer of a second conductivity type above and in contact with the second lightly doped layer, the second conductivity type opposite the first conductivity type; forming a first dielectric antifuse above the third heavily doped layer of the first pillar-shaped semiconductor element; and forming a second conductor above the first dielectric antifuse.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: August 23, 2011
    Assignee: SanDisk 3D LLC
    Inventors: S. Brad Herner, Maitreyee Mahajani
  • Patent number: 7994064
    Abstract: Ions are implanted into a silicon donor body, defining a cleave plane. A first surface of the donor body is affixed to a receiver element, and a lamina is exfoliated at the cleave plane, creating a second surface of the lamina. There is damaged silicon at the second surface, which will compromise the efficiency of a photovoltaic cell formed from the lamina. A selective etchant, having an etch rate which is positively correlated with the concentration of structural defects in silicon, is used to remove the damaged silicon at the second surface, while removing very little of the relatively undamaged lamina.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: August 9, 2011
    Assignee: Twin Creeks Technologies, Inc.
    Inventors: Mark H. Clark, S. Brad Herner, Mohamed M. Hilali
  • Publication number: 20110186797
    Abstract: In a first embodiment, a method of forming a memory cell is provided that includes (a) forming one or more layers of steering element material above a substrate; (b) etching a portion of the steering element material to form a pillar of steering element material having an exposed sidewall; (c) forming a sidewall collar along the exposed sidewall of the pillar; and (d) forming a memory cell using the pillar. Numerous other aspects are provided.
    Type: Application
    Filed: February 2, 2010
    Publication date: August 4, 2011
    Inventor: S. Brad Herner
  • Publication number: 20110176352
    Abstract: A nonvolatile memory cell is described, the memory cell comprising a semiconductor diode. The semiconductor material making up the diode is formed with significant defect density, and allows very low current flow at a typical read voltage. Application of a programming voltage permanently changes the nature of the semiconductor material, resulting in an improved diode. The programmed diode allows much higher current flow, in some embodiments one, two or three orders of magnitude higher, at the same read voltage. The difference in current allows a programmed memory cell to be distinguished from an unprogrammed memory cell. Fabrication techniques to generate an advantageous unprogrammed defect density are described. The memory cell of the present invention can be formed in a monolithic three dimensional memory array, having multiple stacked memory levels formed above a single substrate.
    Type: Application
    Filed: March 29, 2011
    Publication date: July 21, 2011
    Inventors: S. Brad Herner, Abhijit Bandyopadhyay
  • Patent number: 7982209
    Abstract: A rewritable nonvolatile memory cell is disclosed comprising a steering element in series with a carbon nanotube fabric. The steering element is preferably a diode, but may also be a transistor. The carbon nanotube fabric reversibly changes resistivity when subjected to an appropriate electrical pulse. The different resistivity states of the carbon nanotube fabric can be sensed, and can correspond to distinct data states of the memory cell. A first memory level of such memory cells can be monolithically formed above a substrate, a second memory level monolithically formed above the first, and so on, forming a highly dense monolithic three dimensional memory array of stacked memory levels.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: July 19, 2011
    Assignee: SanDisk 3D LLC
    Inventors: S. Brad Herner, Roy E. Scheuerlein
  • Publication number: 20110136326
    Abstract: A method of making a semiconductor device includes providing an insulating layer containing a plurality of openings, forming a first semiconductor layer in the plurality of openings in the insulating layer and over the insulating layer, and removing a first portion of the first semiconductor layer, such that first conductivity type second portions of the first semiconductor layer remain in lower portions of the plurality of openings in the insulating layer, and upper portions of the plurality of openings in the insulating layer remain unfilled. The method also includes forming a second semiconductor layer in the upper portions of the plurality of openings in the insulating layer and over the insulating layer, and removing a first portion of the second semiconductor layer located over the insulating layer.
    Type: Application
    Filed: February 14, 2011
    Publication date: June 9, 2011
    Applicant: SanDisk 3D LLC
    Inventors: Vance DUNTON, S. Brad Herner, Paul Wai Kie Poon, Chuanbin Pan, Michael Chan, Michael Konevecki, Usha Raghuram
  • Publication number: 20110114913
    Abstract: In the present invention, a metal oxide or nitride compound which is a wide-band-gap semiconductor abuts a silicon, germanium, or alloy of silicon and/or germanium of the opposite conductivity type to form a p-n heterojunction. This p-n heterojunction can be used to advantage in various devices. In preferred embodiments, one terminal of a vertically oriented p-i-n heterojunction diode is a metal oxide or nitride layer, while the rest of the diode is formed of a silicon or silicon-germanium resistor. For example, a diode may include a heavily doped n-type silicon region, an intrinsic silicon region, and a nickel oxide layer serving as the p-type terminal. Many of these metal oxides and nitrides exhibit resistivity-switching behavior, and such a heterojunction diode can be used in a nonvolatile memory cell, for example in a monolithic three dimensional memory array.
    Type: Application
    Filed: January 17, 2011
    Publication date: May 19, 2011
    Inventors: Tanmay Kumar, S. Brad Herner
  • Patent number: 7924602
    Abstract: A method of programming a carbon nanotube memory cell is provided, wherein the memory cell comprises a first conductor, a steering element, a carbon nanotube fabric, and a second conductor, wherein the steering element and the carbon nanotube fabric are arranged electrically in series between the first conductor and the second conductor, and wherein the entire carbon nanotube memory cell is formed above a substrate, the carbon nanotube fabric having a first resistivity, the method including applying a first electrical set pulse between the first conductor and the second conductor, wherein, after application of the first electrical set pulse, the carbon nanotube fabric has a second resistivity, the second resistivity less than the first resistivity. Other aspects are also provided.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: April 12, 2011
    Assignee: SanDisk 3D LLC
    Inventors: S. Brad Herner, Roy E. Scheuerlein
  • Publication number: 20110076796
    Abstract: A donor silicon wafer may be bonded to a substrate and a lamina cleaved from the donor wafer. A photovoltaic cell may be formed from the lamina bonded to the substrate. An intermetal stack is described that is optimized for use in such a cell. The intermetal stack may include a transparent conductive oxide layer serving as a quarter-wave plate, a low resistance layer, an adhesion layer to help adhesion to the receiver element, and may also include a barrier layer to prevent or impede unwanted diffusion within the stack.
    Type: Application
    Filed: September 30, 2009
    Publication date: March 31, 2011
    Applicant: TWIN CREEKS TECHNOLOGIES, INC.
    Inventors: S. Brad Herner, Mark H. Clark
  • Patent number: 7915094
    Abstract: A method of making a nonvolatile memory device includes fabricating a diode in a low resistivity, programmed state without an electrical programming step. The memory device includes at least one memory cell. The memory cell is constituted by the diode and electrically conductive electrodes contacting the diode.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: March 29, 2011
    Assignee: SanDisk 3D LLC
    Inventors: Tanmay Kumar, S. Brad Herner
  • Patent number: 7915095
    Abstract: An antifuse contains a first silicide layer, a grown silicon oxide antifuse layer on a first surface of the first silicide layer, and a first semiconductor layer having a first surface in contact with the antifuse layer.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: March 29, 2011
    Assignee: SanDisk 3D LLC
    Inventor: S. Brad Herner
  • Patent number: 7906392
    Abstract: A method of making a semiconductor device includes providing an insulating layer containing a plurality of openings, forming a first semiconductor layer in the plurality of openings in the insulating layer and over the insulating layer, and removing a first portion of the first semiconductor layer, such that first conductivity type second portions of the first semiconductor layer remain in lower portions of the plurality of openings in the insulating layer, and upper portions of the plurality of openings in the insulating layer remain unfilled. The method also includes forming a second semiconductor layer in the upper portions of the plurality of openings in the insulating layer and over the insulating layer, and removing a first portion of the second semiconductor layer located over the insulating layer.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: March 15, 2011
    Assignee: SanDisk 3D LLC
    Inventors: Vance Dunton, S. Brad Herner, Paul Wai Kie Poon, Chuanbin Pan, Michael Chan, Michael Konevecki, Usha Raghuram
  • Publication number: 20110049466
    Abstract: A memory is provided that includes a first memory level having a plurality of memory cells. Each memory cell includes a vertically oriented p-i-n diode including a bottom heavily doped p-type region, a middle intrinsic or lightly doped region, and a top heavily doped n-type region. When a voltage between about 1.5 volts and about 3.0 volts is applied across each p-i-n diode, a current of at least 1.5 microamps flows through 99 percent of the p-i-n diodes. Numerous other aspects are also provided.
    Type: Application
    Filed: November 5, 2010
    Publication date: March 3, 2011
    Inventor: S. Brad Herner
  • Publication number: 20110036397
    Abstract: A donor silicon wafer may be bonded to a substrate and a lamina cleaved from the donor wafer. A photovoltaic cell may be formed from the lamina bonded to the substrate. An intermetal stack is described that is optimized for use in such a cell. The intermetal stack may include a titanium layer in contact with the lamina, which reacts to form titanium silicide, a non-reactive barrier layer to check the silicide reaction, a low-resistance layer, and an adhesion layer to help adhesion to the receiver element.
    Type: Application
    Filed: August 13, 2009
    Publication date: February 17, 2011
    Applicant: TWIN CREEKS TECHNOLOGIES, INC.
    Inventor: S. Brad Herner
  • Patent number: 7888205
    Abstract: Shrinking the dimensions of PMOS or NMOS thin film transistors is limited by dopant diffusion. In these devices an undoped or lightly doped channel region is interposed between heavily doped source and drain regions. When the device is built with very short gate length, source and drain dopants will diffuse into the channel, potentially shorting it and ruining the device. A suite of innovations is described which may be used in various combinations to minimize dopant diffusion during fabrication of a PMOS or NMOS polycrystalline thin film transistor, resulting in a highly scalable thin film transistor. This transistor is particularly suitable for use in a monolithic three dimensional array of stacked device levels.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: February 15, 2011
    Assignee: SanDisk 3D LLC
    Inventors: S. Brad Herner, Abhijit Bandyopadhyay
  • Patent number: 7875871
    Abstract: In the present invention a metal oxide or nitride compound which is a wide-band-gap semiconductor abuts a silicon, germanium, or alloy of silicon and/or germanium of the opposite conductivity type to form a p-n heterojunction. This p-n heterojunction can be used to advantage in various devices. In preferred embodiments, one terminal of a vertically oriented p-i-n heterojunction diode is a metal oxide or nitride layer, while the rest of the diode is formed of a silicon or silicon-germanium resistor; for example a diode may include a heavily doped n-type silicon region, an intrinsic silicon region, and a nickel oxide layer serving as the p-type terminal. Many of these metal oxides and nitrides exhibit resistivity-switching behavior, and such a heterojunction diode can be used in a nonvolatile memory cell, for example in a monolithic three dimensional memory array.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: January 25, 2011
    Assignee: SanDisk 3D LLC
    Inventors: Tanmay Kumar, S. Brad Herner
  • Patent number: 7858430
    Abstract: In aspects of the present invention, a method is disclosed to form a lamina having opposing first and second surfaces. Heavily doped contact regions extend from the first surface to the second surface. Generally the lamina is formed by affixing a semiconductor donor body to a receiver element, then cleaving the lamina from the semiconductor donor body wherein the lamina remains affixed to the receiver element. In the present invention, the heavily doped contact regions are formed by doping the semiconductor donor body before cleaving of the lamina. A photovoltaic cell comprising the lamina is then fabricated. By forming the heavily doped contact regions before bonding to the receiver element and cleaving, post-bonding high-temperature steps can be avoided, which may be advantageous.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: December 28, 2010
    Assignee: Twin Creeks Technologies, Inc.
    Inventors: Mohamed M. Hilali, Christopher J. Petti, S. Brad Herner