Patents by Inventor S. Brad Herner

S. Brad Herner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7655509
    Abstract: An antifuse contains a first silicide layer, a grown silicon oxide antifuse layer on a first surface of the first silicide layer, and a first semiconductor layer having a first surface in contact with the antifuse layer.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: February 2, 2010
    Assignee: SanDisk 3D LLC
    Inventor: S. Brad Herner
  • Patent number: 7648896
    Abstract: In deposited silicon, n-type dopants such as phosphorus and arsenic tend to seek the surface of the silicon, rising as the layer is deposited. When a second undoped or p-doped silicon layer is deposited on n-doped silicon with no n-type dopant provided, a first thickness of this second silicon layer nonetheless tends to include unwanted n-type dopant which has diffused up from lower levels. This surface-seeking behavior diminishes when germanium is alloyed with the silicon. In some devices, it may not be advantageous for the second layer to have significant germanium content. In the present invention, a first heavily n-doped semiconductor layer (preferably at least 10 at % germanium) is deposited, followed by a silicon-germanium capping layer with little or no n-type dopant, followed by a layer with little or no n-type dopant and less than 10 at % germanium. The germanium in the first layer and the capping layer minimizes diffusion of n-type dopant into the germanium-poor layer above.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: January 19, 2010
    Assignee: SanDisk 3D LLC
    Inventor: S. Brad Herner
  • Publication number: 20100009488
    Abstract: A very thin photovoltaic cell is formed by implanting gas ions below the surface of a donor body such as a semiconductor wafer. Ion implantation defines a cleave plane, and a subsequent step exfoliates a thin lamina from the wafer at the cleave plane. A photovoltaic cell, or all or a portion of the base or emitter of a photovoltaic cell, is formed within the lamina. In preferred embodiments, the wafer is affixed to a receiver before the cleaving step. Electrical contact can be formed to both surfaces of the lamina, or to one surface only.
    Type: Application
    Filed: July 8, 2009
    Publication date: January 14, 2010
    Applicant: TWIN CREEKS TECHNOLOGIES, INC.
    Inventors: Srinivasan Sivaram, Aditya Agarwal, S. Brad Herner, Christopher J. Petti
  • Publication number: 20090316468
    Abstract: A first memory level includes a first plurality of memory cells that includes every memory cell in the first memory level. Each memory cell includes a vertically oriented p-i-n diode in the form of a pillar that includes a bottom heavily doped p-type region, a middle intrinsic or lightly doped region, and a top heavily doped n-type region. The first plurality of memory cells includes programmed cells and unprogrammed cells, wherein programmed cells comprise at least half of the first plurality of memory cells. Current flowing through the p-i-n diodes of at least 99 percent of the programmed cells when a voltage between about 1.5 volts and about 3.0 volts is applied between the bottom heavily doped p-type region and the top heavily doped n-type region is at least 1.5 microamps.
    Type: Application
    Filed: June 4, 2009
    Publication date: December 24, 2009
    Applicant: SanDisk 3D LLC
    Inventor: S. Brad Herner
  • Patent number: 7618850
    Abstract: A method of making a nonvolatile memory device includes fabricating a diode in a low resistivity, programmed state without an electrical programming step. The memory device includes at least one memory cell. The memory cell is constituted by the diode and electrically conductive electrodes contacting the diode.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: November 17, 2009
    Assignee: SanDisk 3D LLC
    Inventors: Tanmay Kumar, S. Brad Herner
  • Publication number: 20090268508
    Abstract: One embodiment of the invention provides a semiconductor diode device including a first conductivity type region, a second conductivity type region, where the second conductivity type is different from the first conductivity type, an intrinsic region located between the first conductivity type region and the second conductivity type region; a first halo region of the first conductivity type located between the second conductivity type region and the intrinsic region, and optionally a second halo region of the second conductivity type located between the first conductivity type region and the intrinsic region.
    Type: Application
    Filed: April 29, 2008
    Publication date: October 29, 2009
    Inventors: Xiying Chen, Mark H. Clark, S. Brad Herner, Tanmay Kumar
  • Publication number: 20090261343
    Abstract: Nonvolatile memory cells and methods of forming the same are provided, the methods including forming a first conductor at a first height above a substrate; forming a first pillar-shaped semiconductor element above the first conductor, wherein the first pillar-shaped semiconductor element comprises a first heavily doped layer of a first conductivity type, a second lightly doped layer above and in contact with the first heavily doped layer, and a third heavily doped layer of a second conductivity type above and in contact with the second lightly doped layer, the second conductivity type opposite the first conductivity type; forming a first dielectric antifuse above the third heavily doped layer of the first pillar-shaped semiconductor element; and forming a second conductor above the first dielectric antifuse.
    Type: Application
    Filed: June 3, 2009
    Publication date: October 22, 2009
    Applicant: SanDisk 3D LLC
    Inventors: S. Brad Herner, Maitreyee Mahajani
  • Publication number: 20090242031
    Abstract: A semiconductor donor body is affixed to a receiver element, and a thin semiconductor lamina is cleaved from the donor body, remaining affixed to the receiver element. A photovoltaic assembly is fabricated which includes the lamina and the receiver element, wherein a photovoltaic cell comprises the lamina. The bond between the semiconductor donor body and the receiver element must survive processing to complete the cell, as well as eventual assembly, transport, and operation in a finished photovoltaic module. It has been found that inclusion of a conductive layer such as titanium or aluminum aids bonding between the semiconductor donor body and the receiver element. In some embodiments, the conductive layer may also serve as an electrical contact and/or as a reflective layer.
    Type: Application
    Filed: March 27, 2008
    Publication date: October 1, 2009
    Applicant: Twin Creeks Technologies, Inc.
    Inventors: S. Brad Herner, Aditya Agarwal
  • Publication number: 20090242010
    Abstract: A donor semiconductor wafer is processed to define a cleave plane, then affixed to a discrete receiver element, which may be glass, metal or a metal compound, plastic, or semiconductor. A semiconductor lamina is cleaved from the donor wafer at the cleave plane. A photovoltaic assembly is fabricated comprising the semiconductor lamina and the receiver element. The photovoltaic assembly comprises a photovoltaic cell. After fabrication, the photovoltaic assembly can be inspected for defects and tested for performance, and select photovoltaic assemblies can be assembled into a completed photovoltaic module.
    Type: Application
    Filed: March 27, 2008
    Publication date: October 1, 2009
    Applicant: Twin Creeks Technologies, Inc.
    Inventor: S. Brad Herner
  • Patent number: 7586773
    Abstract: An upward-pointing p-i-n diode formed of deposited silicon, germanium, or silicon-germanium is disclosed. The diode has a bottom heavily doped p-type region, a middle intrinsic or lightly doped region, and a top heavily doped n-type region. The top heavily doped p-type region is doped with arsenic, and the semiconductor material of the diode is crystallized in contact with an appropriate silicide, germanide, or silicide-germanide. A large array of such upward-pointing diodes can be formed with excellent uniformity of current across the array when a voltage above the turn-on voltage of the diodes is applied. This diode is advantageously used in a monolithic three dimensional memory array.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: September 8, 2009
    Assignee: SanDisk 3D LLC
    Inventor: S. Brad Herner
  • Publication number: 20090194163
    Abstract: A very thin photovoltaic cell is formed by implanting gas ions below the surface of a donor body such as a semiconductor wafer. Ion implantation defines a cleave plane, and a subsequent step exfoliates a thin lamina from the wafer at the cleave plane. A photovoltaic cell, or all or a portion of the base or emitter of a photovoltaic cell, is formed within the lamina. In preferred embodiments, the wafer is affixed to a receiver before the cleaving step. Electrical contact can be formed to both surfaces of the lamina, or to one surface only.
    Type: Application
    Filed: September 10, 2008
    Publication date: August 6, 2009
    Applicant: TWIN CREEKS TECHNOLOGIES, INC.
    Inventors: Srinivasan Sivaram, Aditya Agarwal, S. Brad Herner, Christopher J. Petti
  • Publication number: 20090194162
    Abstract: A very thin photovoltaic cell is formed by implanting gas ions below the surface of a donor body such as a semiconductor wafer. Ion implantation defines a cleave plane, and a subsequent step exfoliates a thin lamina from the wafer at the cleave plane. A photovoltaic cell, or all or a portion of the base or emitter of a photovoltaic cell, is formed within the lamina. In preferred embodiments, the wafer is affixed to a receiver before the cleaving step. Electrical contact can be formed to both surfaces of the lamina, or to one surface only.
    Type: Application
    Filed: February 5, 2008
    Publication date: August 6, 2009
    Applicant: Twin Creeks Technologies, Inc.
    Inventors: Srinivasan Sivaram, Aditya Agarwal, S. Brad Herner, Christopher J. Petti
  • Publication number: 20090197367
    Abstract: A very thin photovoltaic cell is formed by implanting gas ions below the surface of a donor body such as a semiconductor wafer. Ion implantation defines a cleave plane, and a subsequent step exfoliates a thin lamina from the wafer at the cleave plane. A photovoltaic cell, or all or a portion of the base or emitter of a photovoltaic cell, is formed within the lamina. In preferred embodiments, the wafer is affixed to a receiver before the cleaving step. Electrical contact can be formed to both surfaces of the lamina, or to one surface only.
    Type: Application
    Filed: September 12, 2008
    Publication date: August 6, 2009
    Applicant: TWIN CREEKS TECHNOLOGIES, INC.
    Inventors: Srinivasan Sivaram, Aditya Agarwal, S. Brad Herner, Christopher J. Petti
  • Publication number: 20090197368
    Abstract: A very thin photovoltaic cell is formed by implanting gas ions below the surface of a donor body such as a semiconductor wafer. Ion implantation defines a cleave plane, and a subsequent step exfoliates a thin lamina from the wafer at the cleave plane. A photovoltaic cell, or all or a portion of the base or emitter of a photovoltaic cell, is formed within the lamina. In preferred embodiments, the wafer is affixed to a receiver before the cleaving step. Electrical contact can be formed to both surfaces of the lamina, or to one surface only.
    Type: Application
    Filed: September 11, 2008
    Publication date: August 6, 2009
    Applicant: TWIN CREEKS TECHNOLOGIES, INC.
    Inventors: Srinivasan Sivaram, Aditya Agarwal, S. Brad Herner, Christopher J. Petti
  • Publication number: 20090194164
    Abstract: A very thin photovoltaic cell is formed by implanting gas ions below the surface of a donor body such as a semiconductor wafer. Ion implantation defines a cleave plane, and a subsequent step exfoliates a thin lamina from the wafer at the cleave plane. A photovoltaic cell, or all or a portion of the base or emitter of a photovoltaic cell, is formed within the lamina. In preferred embodiments, the wafer is affixed to a receiver before the cleaving step. Electrical contact can be formed to both surfaces of the lamina, or to one surface only.
    Type: Application
    Filed: September 11, 2008
    Publication date: August 6, 2009
    Applicant: TWIN CREEKS TECHNOLOGIES, INC.
    Inventors: Srinivasan Sivaram, Aditya Agarwal, S. Brad Herner, Christopher J. Petti
  • Publication number: 20090181515
    Abstract: A method of making a pillar device includes providing an insulating layer having an opening, and selectively depositing germanium or germanium rich silicon germanium semiconductor material into the opening to form the pillar device.
    Type: Application
    Filed: January 15, 2008
    Publication date: July 16, 2009
    Inventors: S. Brad Herner, Christopher J. Petti
  • Publication number: 20090179310
    Abstract: A method of making a semiconductor device includes providing an insulating layer containing a plurality of openings, forming a first semiconductor layer in the plurality of openings in the insulating layer and over the insulating layer, and removing a first portion of the first semiconductor layer, such that first conductivity type second portions of the first semiconductor layer remain in lower portions of the plurality of openings in the insulating layer, and upper portions of the plurality of openings in the insulating layer remain unfilled. The method also includes forming a second semiconductor layer in the upper portions of the plurality of openings in the insulating layer and over the insulating layer, and removing a first portion of the second semiconductor layer located over the insulating layer.
    Type: Application
    Filed: January 15, 2008
    Publication date: July 16, 2009
    Inventors: Vance Dunton, S. Brad Herner, Paul Wai Kie Poon, Chuanbin Pan, Michael Chan, Michael Konevecki, Usha Raghuram
  • Patent number: 7560339
    Abstract: A nonvolatile memory cell according to the present invention comprises a bottom conductor, a semiconductor pillar, and a top conductor. The semiconductor pillar comprises a junction diode, including a bottom heavily doped region, a middle intrinsic or lightly doped region, and a top heavily doped region, wherein the conductivity types of the top and bottom heavily doped region are opposite. The junction diode is vertically oriented and is of reduced height, between about 500 angstroms and about 3500 angstroms. A monolithic three dimensional memory array of such cells can be formed comprising multiple memory levels, the levels monolithically formed above one another.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: July 14, 2009
    Assignee: Sandisk 3D LLC
    Inventors: S. Brad Herner, Steven J. Radigan
  • Patent number: 7557405
    Abstract: An improved nonvolatile memory cell made by a method for fabricating a three dimensional monolithic memory with increased density. The memory cell includes at least a part of a first conductor, a semiconductor element, and at least a part of a second conductor. The method includes forming conductors preferably comprising tungsten, then filling and planarizing; above the conductors forming semiconductor elements, preferably comprising two diode portions, optionally forming an antifuse above or below both of the diode portions, and then filling and planarizing; and continuing to form conductors and semiconductor elements in multiple stories of memories. The arrangement of processing steps and the choice of materials decreases aspect ratio of each memory cell, improving the reliability of gap fill and preventing etch undercut.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: July 7, 2009
    Assignee: SanDisk 3D LLC
    Inventors: S. Brad Herner, Maitreyee Mahajani
  • Patent number: 7537968
    Abstract: A method for annealing a diode formed of a silicon-germanium alloy that minimizes leakage current is disclosed. The method includes the steps of forming semiconductor pillars of an alloy of silicon and germanium; heating the pillars at a first temperature for at least 30 minutes, and then heating the pillars at a second temperature higher than the first temperature of the alloy for up to 120 seconds. The invention further includes a monolithic three dimensional memory array of a plurality of p-i-n diodes, the p-i-n diodes being formed of a silicon-germanium alloy that have been subjected to a two-stage heating process.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: May 26, 2009
    Assignee: Sandisk 3D LLC
    Inventor: S. Brad Herner