Patents by Inventor Sameer Pendharkar

Sameer Pendharkar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080246117
    Abstract: A method for manufacturing a semiconductor device that comprises implanting a first dopant type in a well region of a substrate to form implanted sub-regions that are separated by non-implanted areas of the well region. The method also comprises forming an oxide layer over the well region, such that an oxide-converted first thickness of the implanted sub-regions is greater than an oxide-converted second thickness of the non-implanted areas. The method further comprises removing the oxide layer to form a topography feature on the well region. The topography feature comprises a surface pattern of higher and lower portions. The higher portions correspond to locations of the non-implanted areas and the lower portions correspond to the implanted sub-regions.
    Type: Application
    Filed: April 5, 2007
    Publication date: October 9, 2008
    Applicant: Texas Instruments Inccorporated
    Inventors: Sameer Pendharkar, Binghua Hu, Xinfen Celia Chen
  • Patent number: 7427795
    Abstract: Drain-extended MOS transistors (T1, T2) and semiconductor devices (102) are described, as well as fabrication methods (202) therefor, in which a p-buried layer (130) is formed prior to formation of epitaxial silicon (106) over a substrate (104), and a drain-extended MOS transistor (T1, T2) is formed in the epitaxial silicon layer (106). The p-buried layer (130) may be formed above an n-buried layer (120) in the substrate (104) for high-side driver transistor (T2) applications, wherein the p-buried layer (130) extends between the drain-extended MOS transistor (T2) and the n-buried layer (120) to inhibit off-state breakdown between the source (154) and drain (156).
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: September 23, 2008
    Assignee: Texas Instruments Incorporated
    Inventor: Sameer Pendharkar
  • Publication number: 20070246773
    Abstract: A transistor comprises a source region of a first conductivity type and electrically communicating with a first semiconductor region. The transistor also comprises a drain region of the first conductivity type and electrically communicating with a second semiconductor region that differs from the first semiconductor region. An interface exists between the first semiconductor region and the second semiconductor region. The transistor also comprises a voltage tap region comprising at least a portion located in a position that is closer to the interface than the drain region. A mixed technology circuit is also described.
    Type: Application
    Filed: April 20, 2006
    Publication date: October 25, 2007
    Applicant: Texas Instruments Incorporated
    Inventor: Sameer Pendharkar
  • Patent number: 7262471
    Abstract: A semiconductor device (102) that includes a drain extended PMOS transistor (CT1a) is provided, as well as fabrication methods (202) therefore. In forming the PMOS transistor, a drain (124) of the transistor is formed over a region (125) of a p-type upper epitaxial layer (106), where the region (125) of the p-type upper epitaxial layer (106) is sandwiched between a left P-WELL region (130a) and a right P-WELL region (130b) formed within the p-type upper epitaxial layer (106). The p-type upper epitaxial layer (106) is formed over a semiconductor body (104) that has an n-buried layer (108) formed therein. This arrangement serves to increase the breakdown voltage (BVdss) of the drain extended PMOS transistor.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: August 28, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Shanjen Pan, Sameer Pendharkar, James R. Todd
  • Patent number: 7238986
    Abstract: Extended-drain MOS transistor devices and fabrication methods are provided, in which a drift region of a first conductivity type is formed between a drain of the first conductivity type and a channel. The drift region comprises first and second portions, the first portion extending partially under a gate structure between the channel and the second portion, and the second portion extending laterally between the first portion and the drain, wherein the first portion of the drift region has a concentration of first type dopants higher than the second portion.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: July 3, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Sameer Pendharkar, Ramanathan Ramani, Taylor R. Efland
  • Patent number: 7235451
    Abstract: Semiconductor devices and manufacturing methods therefor are disclosed, in which a drain-extended MOS transistor comprises a self-aligned floating region proximate one end of the transistor gate and doped with a first type dopant to reduce channel hot carrier degradation, as well as an oppositely doped first source/drain laterally spaced from the first end of the gate structure in a semiconductor body. The device may further comprise a resurf region doped to a lower concentration than the floating region to facilitate improved breakdown voltage performance. A method of fabricating a drain-extended MOS transistor in a semiconductor device is disclosed, comprising providing first dopants to a floating region in a semiconductor body, which is self-aligned with the first end of a gate structure, and providing second dopants to source/drains of the semiconductor body, wherein the first and second dopants are different.
    Type: Grant
    Filed: March 3, 2003
    Date of Patent: June 26, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Pinghai Hao, Shanjen Pan, Sameer Pendharkar
  • Publication number: 20070122944
    Abstract: An integrated circuit (IC) chip, mounted on a leadframe, has a network of power distribution lines deposited on the surface of the chip so that these lines are located over active components of the IC, connected vertically by metal-filled vias to selected active components below the lines, and also by conductors to segments of the leadframe. Furthermore, the lines are fabricated with a sheet resistance of less than 1.5 m?/ยท and the majority of the lines is patterned as straight lines between the vias and the conductors, respectively.
    Type: Application
    Filed: October 6, 2006
    Publication date: May 31, 2007
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Taylor Efland, Milton Buschbom, Sameer Pendharkar
  • Publication number: 20070114607
    Abstract: High side extended-drain MOS driver transistors (T2) are presented in which an extended drain (108, 156) is separated from a first buried layer (120) by a second buried layer (130), wherein an internal or external diode (148) is coupled between the first buried layer (120) and the extended drain (108, 156) to increase the breakdown voltage.
    Type: Application
    Filed: January 24, 2007
    Publication date: May 24, 2007
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Sameer Pendharkar
  • Patent number: 7208364
    Abstract: Methods of fabrication and devices include field plates formed during capacitor formation. Isolation structures are formed in a semiconductor substrate. Well regions are formed in the semiconductor substrate. Drain extension regions are formed in the well regions. A gate dielectric layer is formed over the device. A gate electrode layer is formed that serves as the gate electrode and a bottom capacitor plate. The gate electrode and the gate dielectric layer are patterned to form gate structures. Source and drain regions are formed within the well regions and the drain extension regions. A silicide blocking layer is formed that also serves as a capacitor dielectric. Field plates and a top capacitor plate are formed on the blocking layer.
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: April 24, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Shanjen Pan, Sameer Pendharkar, Pinghai Hao, James R. Todd
  • Patent number: 7195965
    Abstract: The concept of the present invention describes a semiconductor device with a junction 504 between a lightly doped region 501 and a heavily doped region 502, wherein the junction has an elongated portion 504a and curved portions 504b. The doping concentration of the lightly doped region is configured so that it exhibits higher resistivity in the proximity 510 of the curved portion by an amount suitable to lower the electric field strength during device operation and thus to offset the increased field strength caused by the curved portion. As a consequence, the device breakdown voltage in the curved junction portion becomes equal to or greater than the breakdown voltage in the linear portion.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: March 27, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: John Lin, Philip L. Hower, Taylor R. Efland, Sameer Pendharkar, Vladimir Bolkhovsky
  • Patent number: 7187033
    Abstract: High side extended-drain MOS driver transistors (T2) are presented in which an extended drain (108, 156) is separated from a first buried layer (120) by a second buried layer (130), wherein an internal or external diode (148) is coupled between the first buried layer (120) and the extended drain (108, 156) to increase the breakdown voltage.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: March 6, 2007
    Assignee: Texas Instruments Incorporated
    Inventor: Sameer Pendharkar
  • Patent number: 7176091
    Abstract: Drain-extended MOS transistors (T1, T2) and semiconductor devices (102) are described, as well as fabrication methods (202) therefor, in which a p-buried layer (130) is formed prior to formation of epitaxial silicon (106) over a substrate (104), and a drain-extended MOS transistor (T1, T2) is formed in the epitaxial silicon layer (106). The p-buried layer (130) may be formed above an n-buried layer (120) in the substrate (104) for high-side driver transistor (T2) applications, wherein the p-buried layer (130) extends between the drain-extended MOS transistor (T2) and the n-buried layer (120) to inhibit off-state breakdown between the source (154) and drain (156).
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: February 13, 2007
    Assignee: Texas Instruments Incorporated
    Inventor: Sameer Pendharkar
  • Publication number: 20070033556
    Abstract: Validation of at least some of a proposed semiconductor design layout is disclosed. According to one or more aspects of the present invention, a first voltage dependent design rule is applied to an edge of an area of the layout if the edge is not covered by a pseudo layer. A second voltage dependent design rule is, on the other hand, applied to the edge of the area if the edge is covered by the pseudo layer.
    Type: Application
    Filed: August 8, 2005
    Publication date: February 8, 2007
    Inventors: Lily Springer, Haim Horovitz, Robert Shaw, Sameer Pendharkar, Wen-Hwa Chu, Paul Mannas
  • Publication number: 20060286741
    Abstract: Methods of fabrication and devices include field plates formed during capacitor formation. Isolation structures are formed in a semiconductor substrate. Well regions are formed in the semiconductor substrate. Drain extension regions are formed in the well regions. A gate dielectric layer is formed over the device. A gate electrode layer is formed that serves as the gate electrode and a bottom capacitor plate. The gate electrode and the gate dielectric layer are patterned to form gate structures. Source and drain regions are formed within the well regions and the drain extension regions. A silicide blocking layer is formed that also serves as a capacitor dielectric. Field plates and a top capacitor plate are formed on the blocking layer.
    Type: Application
    Filed: June 16, 2005
    Publication date: December 21, 2006
    Inventors: Shanjen Pan, Sameer Pendharkar, Pinghai Hao, James Todd
  • Patent number: 7135759
    Abstract: An integrated circuit (IC) chip, mounted on a leadframe, has a network of power distribution lines deposited on the surface of the chip so that these lines are located over active components of the IC, connected vertically by metal-filled vias to selected active components below the lines, and also by conductors to segments of the leadframe. Furthermore, the lines are fabricated with a sheet resistance of less than 1.5 m?/? and the majority of the lines is patterned as straight lines between the vias and the conductors, respectively.
    Type: Grant
    Filed: October 22, 2001
    Date of Patent: November 14, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Taylor R. Efland, Milton L. Buschbom, Sameer Pendharkar
  • Patent number: 7135373
    Abstract: A transistor can be fabricated to exhibit reduced channel hot carrier effects. According to one aspect of the present invention, a method for fabricating a transistor structure includes implanting a first dopant into a lightly doped drain (LDD) region to form a shallow region therein. The first dopant penetrates the substrate to a depth that is less than the LDD junction depth. A second dopant is implanted into the substrate beyond the LDD junction depth to form a source/drain region. The implantation of the second dopant overpowers a substantial portion of the first dopant to define a floating ring in the LDD region that mitigates channel hot carrier effects.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: November 14, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Pinghai Hao, Shanjen Pan, Sameer Pendharkar
  • Patent number: 7122862
    Abstract: A transistor can be fabricated to exhibit reduced channel hot carrier effects. According to one aspect of the present invention, a method for fabricating a transistor structure includes implanting a first dopant into a lightly doped drain (LDD) region to form a shallow region therein. The first dopant penetrates the substrate to a depth that is less than the LDD junction depth. A second dopant is implanted into the substrate beyond the LDD junction depth to form a source/drain region. The implantation of the second dopant overpowers a substantial portion of the first dopant to define a floating ring in the LDD region that mitigates channel hot carrier effects.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: October 17, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Pinghai Hao, Shanjen Pan, Sameer Pendharkar
  • Patent number: 7112480
    Abstract: A CMOS integrated circuit (15A-B-C) includes both relatively low-power (124, 126) and high-power (132, 134) CMOS transistors on the same chip. A 20V, relatively high-power PMOS device (134) includes a heavily doped N-well drain region (70). A 20V, relatively high-power NMOS device (132) includes heavily doped P-type buried layers (76, 78) underneath the source (94) and drain regions (96) and spanning the gap between the P-well gate (90F) and adjacent P-well isolation regions (46, 50).
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: September 26, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Shanjen Pan, James R. Todd, Sameer Pendharkar
  • Publication number: 20060194401
    Abstract: The present invention provides a method for manufacturing a semiconductor device having an alignment feature. The method for manufacturing the semiconductor device, among other steps, may include implanting an n-type dopant into a substrate thereby forming an implanted region and an unimplanted region in the substrate. The method may further include oxidizing the substrate using a wet oxidation process, the wet oxidation process and n-type dopant causing a ratio of oxidation of the implanted region to the unimplanted region to be 2:1 or greater, and then removing the oxidized portions of the substrate thereby leaving an alignment feature proximate the implanted region.
    Type: Application
    Filed: February 28, 2005
    Publication date: August 31, 2006
    Applicant: Texas Instruments, Incorporated
    Inventors: Binghua Hu, Sameer Pendharkar, Bill Wofford, Joseph Ramirez
  • Publication number: 20060186467
    Abstract: A semiconductor device includes one or more LDMOS transistors and one of more SCR-LDMOS transistors. Each LDMOS transistor includes a LDMOS well of a first conductivity type, a LDMOS source region of a second conductivity type formed in the LDMOS well, and a LDMOS drain region of a second conductivity type separated from the LDMOS well by a LDMOS drift region of the second conductivity type. Each SCR-LDMOS transistor comprising a SCR-LDMOS well of the first conductivity type, a SCR-LDMOS source region of the second conductivity type formed in the SCR-LDMOS well, a SCR-LDMOS drain region of a second conductivity type, and a anode region of the first conductivity type between the SCR-LDMOS drain region and the SCR-LDMOS drift region. The anode region is separated from the SCR-LDMOS well by a SCR-LDMOS drift region of the second conductivity type.
    Type: Application
    Filed: February 21, 2005
    Publication date: August 24, 2006
    Inventors: Sameer Pendharkar, Jonathan Brodsky