Patents by Inventor Samuel C. Pan

Samuel C. Pan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190237328
    Abstract: A method of fabricating a semiconductor device includes plasma etching a portion of a plurality of metal dichalcogenide films comprising a compound of a metal and a chalcogen disposed on a substrate by applying a plasma to the plurality of metal dichalcogenide films. After plasma etching, a chalcogen is applied to remaining portions of the plurality of metal dichalcogenide films to repair damage to the remaining portions of the plurality of metal dichalcogenide films from the plasma etching. The chalcogen is S, Se, or Te.
    Type: Application
    Filed: April 12, 2019
    Publication date: August 1, 2019
    Inventors: Shih-Yen LIN, Kuan-Chao CHEN, Si-Chen LEE, Samuel C. PAN
  • Patent number: 10347538
    Abstract: A semiconductor device includes a semiconductor fin protruding from a substrate, a gate electrode over the semiconductor fin, a gate insulating layer between the semiconductor fin and the gate electrode, source and drain regions disposed on opposite sides of the semiconductor fin, a first stressor formed in a region between the source and drain regions. The first stressor is a grading strained stressor including multiple graded portions formed at graded depths. The first stressor is configured to create one of a graded compressive stress or a graded tensile stress.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: July 9, 2019
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Che-Wei Yang, Hao-Hsiung Lin, Samuel C. Pan
  • Patent number: 10332985
    Abstract: A method of manufacturing a semiconductor device includes forming a fin structure having a stack of alternating first semiconductor layers and second semiconductor layers on a substrate. The first and second semiconductor layers include first end portions on either side of a second portion along a length of the first and second semiconductor layers. The first and second semiconductor layers are formed of different materials. The second portion of the first semiconductor layers is removed to form spaces. A mask layer is formed over the second portion of an uppermost second semiconductor layer above the spaces. The first portions of first and second semiconductor layers are irradiated with radiation from a radiation source to cause material from the first portions of the first and second semiconductor layers to combine with each other.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: June 25, 2019
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: I-Hsieh Wong, Samuel C. Pan, Chee-Wee Liu, Huang-Siang Lan, Chung-En Tsai, Fang-Liang Lu
  • Publication number: 20190148499
    Abstract: A method includes providing a black phosphorus (BP) layer over a substrate, forming a dopant source layer over the BP layer, annealing the dopant source layer to drive a dopant from the dopant source layer into the BP layer, and forming a conductive contact over the dopant source layer.
    Type: Application
    Filed: April 23, 2018
    Publication date: May 16, 2019
    Applicants: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Yu-Ming LIN, Chao-Hsin WU, Hsun-Ming CHANG, Samuel C. PAN
  • Patent number: 10290708
    Abstract: Semiconductor devices and methods of forming the same are provided. A first gate electrode layer is formed over a substrate. A first gate dielectric layer is formed over the first gate electrode layer. A first channel layer is formed over the first gate dielectric layer. An isolation layer is formed over the first channel layer. A second channel layer is formed over the isolation layer. A second gate dielectric layer is formed over the second channel layer. The second gate dielectric layer, the second channel layer, the isolation layer and the first channel layer are patterned to form a first opening, the first opening extending through the first gate dielectric layer, the second channel layer and the isolation layer, and into the first channel layer. A first source/drain region is formed in the first opening.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: May 14, 2019
    Assignees: Taiwan Semiconductor Manufacturing Company, Ltd., National Taiwan University
    Inventors: Pin-Shiang Chen, Samuel C. Pan, Chee-Wee Liu, Sheng-Ting Fan
  • Patent number: 10290808
    Abstract: A method and structure for providing uniform, large-area graphene by way of a transfer-free, direct-growth process. In some embodiments, a SAM is used as a carbon source for direct graphene synthesis on a substrate. For example, a SAM is formed on an insulating surface, and a metal layer is formed over the SAM. The metal layer may serve as a catalytic metal, whereby the SAM is converted to graphene following an annealing process. The SAM is deposited using a VPD process (e.g., an ALD process and/or an MLD process). In some embodiments, a CNT having a controlled diameter may be formed on the surface of a nanorod by appropriately tuning the geometry of the nanorod. Additionally, in some embodiments, a curved graphene transistor may be formed over a curved oxide surface, thereby providing a band gap in a channel region of the graphene transistor.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: May 14, 2019
    Assignees: Taiwan Semiconductor Manufacturing Co., Ltd., National Taiwan University
    Inventors: Miin-Jang Chen, Samuel C. Pan, Chung-Yen Hsieh
  • Patent number: 10269564
    Abstract: A method of fabricating a semiconductor device includes plasma etching a portion of a plurality of metal dichalcogenide films comprising a compound of a metal and a chalcogen disposed on a substrate by applying a plasma to the plurality of metal dichalcogenide films. After plasma etching, a chalcogen is applied to remaining portions of the plurality of metal dichalcogenide films to repair damage to the remaining portions of the plurality of metal dichalcogenide films from the plasma etching. The chalcogen is S, Se, or Te.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: April 23, 2019
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Shih-Yen Lin, Kuan-Chao Chen, Si-Chen Lee, Samuel C. Pan
  • Patent number: 10269981
    Abstract: A device includes a semiconductor substrate, a buried oxide over the substrate, a first transition metal dichalcogenide layer over the buried oxide, an insulator over the first transition metal dichalcogenide layer, and a second transition metal dichalcogenide layer over the insulator. A gate dielectric is over the second transition metal dichalcogenide layer, and a gate is over the gate dielectric.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: April 23, 2019
    Assignees: Taiwan Semiconductor Manufacturing Company, Ltd., National Taiwan University
    Inventors: Pin-Shiang Chen, Hung-Chih Chang, Chee-Wee Liu, Samuel C. Pan
  • Publication number: 20190103441
    Abstract: A metal-insulator-semiconductor-insulator-metal (MISIM) device includes a semiconductor layer, an insulating layer disposed over an upper surface of the semiconductor layer, a back electrode disposed over a lower surface of the semiconductor layer opposing the upper surface, and first and second electrodes disposed over the insulating layer and spaced-apart from each other.
    Type: Application
    Filed: June 13, 2018
    Publication date: April 4, 2019
    Inventors: Jenn-Gwo HWU, Hao-Hsiung LIN, Chang-Feng YANG, Samuel C. PAN
  • Publication number: 20190067456
    Abstract: A method of manufacturing a semiconductor device includes forming a fin structure having a stack of alternating first semiconductor layers and second semiconductor layers on a substrate. The first and second semiconductor layers include first end portions on either side of a second portion along a length of the first and second semiconductor layers. The first and second semiconductor layers are formed of different materials. The second portion of the first semiconductor layers is removed to form spaces. A mask layer is formed over the second portion of an uppermost second semiconductor layer above the spaces. The first portions of first and second semiconductor layers are irradiated with radiation from a radiation source to cause material from the first portions of the first and second semiconductor layers to combine with each other.
    Type: Application
    Filed: March 29, 2018
    Publication date: February 28, 2019
    Inventors: I-Hsieh WONG, Samuel C. PAN, Chee-Wee LIU, Huang-Siang LAN, Chung-En TSAI, Fang-Liang LU
  • Publication number: 20190006241
    Abstract: A semiconductor device includes a semiconductor fin protruding from a substrate, a gate electrode over the semiconductor fin, a gate insulating layer between the semiconductor fin and the gate electrode, source and drain regions disposed on opposite sides of the semiconductor fin, a first stressor formed in a region between the source and drain regions. The first stressor is a grading strained stressor including multiple graded portions formed at graded depths. The first stressor is configured to create one of a graded compressive stress or a graded tensile stress.
    Type: Application
    Filed: October 4, 2017
    Publication date: January 3, 2019
    Inventors: Che-Wei YANG, Hao-Hsiung LIN, Samuel C. PAN
  • Publication number: 20190006470
    Abstract: A method for controlling Schottky barrier height in a semiconductor device includes forming an alloy layer including at least a first element and a second element on a first surface of a semiconductor substrate. The semiconductor substrate is a first element-based semiconductor substrate, and the first element and the second element are Group IV elements. A first thermal anneal of the alloy layer and the first element-based substrate is performed. The first thermal anneal causes the second element in the alloy layer to migrate towards a surface of the alloy layer. A Schottky contact layer is formed on the alloy layer after the first thermal anneal.
    Type: Application
    Filed: April 27, 2018
    Publication date: January 3, 2019
    Inventors: Hung-Hsiang CHENG, Samuel C. PAN
  • Patent number: 10157737
    Abstract: Semiconductor devices comprising two-dimensional (2D) materials and methods of manufacture thereof are described. In an embodiment, a method for manufacturing a semiconductor device comprising 2D materials may include: epitaxially forming a first 2D material layer on a substrate; and epitaxially forming a second 2D material layer over the first 2D material layer, the first 2D material layer and the second 2D material layer differing in composition.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: December 18, 2018
    Assignees: Taiwan Semiconductor Manufacturing Company, Ltd., National Taiwan University
    Inventors: Meng-Yu Lin, Shih-Yen Lin, Si-Chen Lee, Samuel C. Pan
  • Publication number: 20180308851
    Abstract: A semiconductor memory device includes a transistor having a gate, a source and a drain and a metal-insulator-semiconductor (MIS) structure. The transistor and the MIS structure are disposed on a common substrate. The MIS structure includes a dielectric layer disposed on a semiconductor region, and an electrode electrically disposed on the dielectric layer and coupled to the drain of the transistor. The electrode includes a bulk portion and a high-resistance portion, both disposed on the dielectric layer. The high-resistance portion has a resistance value in a range from 1.0×10?4 ?cm to 1.0×104 ?cm or a sheet resistance in a range from 1.0×102?/? to 1.0×1010?/?.
    Type: Application
    Filed: September 28, 2017
    Publication date: October 25, 2018
    Inventors: Jenn-Gwo HWU, Samuel C. PAN, Chien-Shun LIAO, Kuan-Hao TSENG
  • Publication number: 20180269291
    Abstract: A method of fabricating a semiconductor device having two dimensional (2D) lateral hetero-structures includes forming alternating regions of a first metal dichalcogenide film and a second metal dichalcogenide film extending along a surface of a first substrate. The first metal dichalcogenide and the second metal dichalcogenide films are different metal dichalcogenides. Each second metal dichalcogenide film region is bordered on opposing lateral sides by a region of the first metal dichalcogenide film, as seen in cross-sectional view.
    Type: Application
    Filed: January 11, 2018
    Publication date: September 20, 2018
    Inventors: Shih-Yen LIN, Si-Chen LEE, Samuel C. PAN, Kuan-Chao CHEN
  • Publication number: 20180269059
    Abstract: A method of fabricating a semiconductor device includes plasma etching a portion of a plurality of metal dichalcogenide films comprising a compound of a metal and a chalcogen disposed on a substrate by applying a plasma to the plurality of metal dichalcogenide films. After plasma etching, a chalcogen is applied to remaining portions of the plurality of metal dichalcogenide films to repair damage to the remaining portions of the plurality of metal dichalcogenide films from the plasma etching. The chalcogen is S, Se, or Te.
    Type: Application
    Filed: October 5, 2017
    Publication date: September 20, 2018
    Inventors: Shih-Yen LIN, Kuan-Chao CHEN, Si-Chen LEE, Samuel C. PAN
  • Publication number: 20180218903
    Abstract: A process for fabricating an integrated circuit is provided. The process includes providing a substrate, forming a hard mask upon the substrate by one of atomic-layer deposition and molecular-layer deposition, and exposing the hard mask to a charged particle from one or more charged particle beams to pattern a gap in the hard mask. In the alternative, the process includes exposing the hard mask to a charged particle from one or more charged-particle beams to pattern a structure on the hard mask.
    Type: Application
    Filed: March 28, 2018
    Publication date: August 2, 2018
    Inventors: Kuen-Yu Tsai, Miin-Jang Chen, Samuel C. Pan
  • Publication number: 20180219019
    Abstract: A method for forming an antifuse on a substrate is provided, which comprises: forming a first conductive material on the substrate; placing the first conductive material in an electrolytic solution; performing anodic oxidation on the first conductive material to form a nanowire made of the first conductive material and surrounded by a first dielectric material formed during the anodic oxidation and to form the antifuse on the nanowire; and forming a second conductive material on the antifuse to sandwich the antifuse between the first conductive material and the second conductive material.
    Type: Application
    Filed: March 29, 2018
    Publication date: August 2, 2018
    Inventors: Jenn-Gwo Hwu, Wei-Cheng Tian, Samuel C. Pan, Chao-Hsiung Wang, Chi-Wen Liu
  • Publication number: 20180212151
    Abstract: A method and structure for providing uniform, large-area graphene by way of a transfer-free, direct-growth process. In some embodiments, a SAM is used as a carbon source for direct graphene synthesis on a substrate. For example, a SAM is formed on an insulating surface, and a metal layer is formed over the SAM. The metal layer may serve as a catalytic metal, whereby the SAM is converted to graphene following an annealing process. The SAM is deposited using a VPD process (e.g., an ALD process and/or an MLD process). In some embodiments, a CNT having a controlled diameter may be formed on the surface of a nanorod by appropriately tuning the geometry of the nanorod. Additionally, in some embodiments, a curved graphene transistor may be formed over a curved oxide surface, thereby providing a band gap in a channel region of the graphene transistor.
    Type: Application
    Filed: March 19, 2018
    Publication date: July 26, 2018
    Inventors: Miin-Jang CHEN, Samuel C. PAN, Chung-Yen HSIEH
  • Publication number: 20180166582
    Abstract: A semiconductor device includes a source and a drain and a channel disposed between the source and the drain, a first gate dielectric layer disposed on the channel, a first gate electrode disposed on the first gate dielectric layer, a second gate dielectric layer disposed on the first gate electrode, and a second gate electrode disposed on the second gate dielectric layer. The second gate dielectric layer is made of a ferroelectric material. A first area of a bottom surface of the first gate electrode which is in contact with the first gate dielectric layer where the is greater than a second area of a bottom surface of the second gate dielectric layer which is in contact with the first gate electrode.
    Type: Application
    Filed: March 2, 2017
    Publication date: June 14, 2018
    Inventors: Yu-Hung LIAO, Samuel C. PAN, Sheng-Ting FAN, Min-Hung LEE, Chee-Wee LIU