Patents by Inventor Sanjeev Aggarwal

Sanjeev Aggarwal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10396279
    Abstract: A magnetoresistive-based device and method of manufacturing a magnetoresistive-based device using one or more hard masks. The process of manufacture, in one embodiment, includes patterning a mask, after patterning the mask, etching (a) through a first layer of electrically conductive material to form an electrically conductive electrode and (b) through a third layer of ferromagnetic material to provide sidewalls of the second synthetic antiferromagnetic structure. The process further includes providing insulating material on or over the sidewalls of the second synthetic antiferromagnetic structure and, thereafter, etching through (a) a second tunnel barrier layer to provide sidewalls thereof, (b) a second layer of ferromagnetic material to provide sidewalls thereof, (c) a first tunnel barrier layer to provide sidewalls thereof, and (d) a first layer of ferromagnetic material to provide sidewalls of the first synthetic antiferromagnetic structure.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: August 27, 2019
    Assignee: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Sarin A. Deshpande, Sanjeev Aggarwal, Kerry Joseph Nagel
  • Publication number: 20190237665
    Abstract: The present disclosure is drawn to, among other things, a method of fabricating an integrated circuit device having a magnetoresistive device. In some aspects, the method includes forming the magnetoresistive device on a first contact of a substrate, wherein the magnetoresistive device includes a fixed magnetic region and a free magnetic region separated by an intermediate region; depositing a first dielectric material over the magnetoresistive device; depositing a second dielectric material over the first dielectric material; polishing a surface of the second dielectric material; forming a first cavity through the polished surface of the second dielectric material to expose a surface of the magnetoresistive device; and depositing an electrically conductive material in the first cavity to form a via.
    Type: Application
    Filed: April 10, 2019
    Publication date: August 1, 2019
    Applicant: Everspin Technologies, Inc.
    Inventors: Sarin A. DESHPANDE, Sanjeev AGGARWAL, Moazzem HOSSAIN
  • Publication number: 20190221737
    Abstract: A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a ā€œZā€ axis magnetic field onto sensors orientated in the XY plane.
    Type: Application
    Filed: March 21, 2019
    Publication date: July 18, 2019
    Applicant: EVERSPIN TECHNOLOGIES, INC.
    Inventors: Renu WHIG, Phillip MATHER, Kenneth SMITH, Sanjeev AGGARWAL, Jon SLAUGHTER, Nicholas RIZZO
  • Publication number: 20190221609
    Abstract: A magnetoresistive device may include multiple magnetic tunnel junction (MTJ) stacks separated from each other by one or more dielectric material layers and electrically conductive vias extending through the one more dielectric material layers. Each MTJ stack may include multiple MTJ bits arranged one on top of another and the electrically conductive vias may be configured to electrically access each MTJ bit of the multiple MTJ stacks.
    Type: Application
    Filed: January 11, 2019
    Publication date: July 18, 2019
    Applicant: Everspin Technologies, Inc.
    Inventors: Sanjeev AGGARWAL, Kevin CONLEY, Sarin A. DESHPANDE
  • Publication number: 20190157550
    Abstract: A magnetoresistive structure having two dielectric layers, and method of manufacturing same, includes a free magnetic layer positioned between the two dielectric layers. The method of manufacture comprises at least two etch processes and at least one encapsulation process interposed therebetween wherein the encapsulation is formed on sidewalls of the partially formed magnetoresistive stack between etch processes. For example, an exemplary method of manufacturing a magnetoresistive device includes etching through a second electrode, second dielectric layer and free magnetic layer to provide a sidewall of (i) an unpinned synthetic antiferromagnetic structure, (ii) a second dielectric layer and (iii) a free magnetic layer; thereafter, forming an encapsulation material on the sidewall of the unpinned synthetic antiferromagnetic structure, second dielectric layer and free magnetic layer, and after forming the encapsulation material, etching through a first dielectric layer.
    Type: Application
    Filed: January 24, 2019
    Publication date: May 23, 2019
    Applicant: Everspin Technologies, Inc.
    Inventors: Sanjeev AGGARWAL, Kerry NAGEL, Jason Janesky
  • Patent number: 10297747
    Abstract: The present disclosure is drawn to, among other things, a method of fabricating an integrated circuit device having a magnetoresistive device. In some aspects, the method includes forming the magnetoresistive device on a first contact of a substrate, wherein the magnetoresistive device includes a fixed magnetic region and a free magnetic region separated by an intermediate region; depositing a first dielectric material over the magnetoresistive device; depositing a second dielectric material over the first dielectric material; polishing a surface of the second dielectric material; forming a first cavity through the polished surface of the second dielectric material to expose a surface of the magnetoresistive device; and depositing an electrically conductive material in the first cavity to form a via.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: May 21, 2019
    Assignee: Everpsin Technologies, Inc.
    Inventors: Sarin A. Deshpande, Sanjeev Aggarwal, Moazzem Hossain
  • Publication number: 20190140019
    Abstract: An integrated circuit device includes a memory portion and a logic portion. The memory portion may include a plurality of magnetoresistive devices and the logic portion may include logic circuits. The memory portion may include a plurality of metal conductors separated by a first interlayer dielectric material (ILD), wherein the first ILD is a low-k ILD or an ultra low-k ILD. And, the logic portion may include a plurality of metal conductors separated by a second interlayer dielectric material (ILD).
    Type: Application
    Filed: November 8, 2018
    Publication date: May 9, 2019
    Applicant: Everspin Technologies, Inc.
    Inventors: Kerry Joseph NAGEL, Sanjeev AGGARWAL, Sarin A. DESHPANDE
  • Publication number: 20190140167
    Abstract: A method of fabricating an integrated circuit device includes forming a trench in a dielectric material and forming a ferromagnetic circuit element having an angled surface on the trench. The angled surface of the circuit element is removed using a chemical mechanical polishing (CMP) process and the trench is filled with an electrically conductive material.
    Type: Application
    Filed: October 30, 2018
    Publication date: May 9, 2019
    Applicant: Everspin Technologies, Inc.
    Inventors: Sanjeev AGGARWAL, Kerry Joseph Nagel
  • Patent number: 10276789
    Abstract: A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a ā€œZā€ axis magnetic field onto sensors orientated in the XY plane.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: April 30, 2019
    Assignee: Everspin Technologies, Inc.
    Inventors: Renu Whig, Phillip Mather, Kenneth Smith, Sanjeev Aggarwal, Jon Slaughter, Nicholas Rizzo
  • Publication number: 20190123098
    Abstract: A magnetoresistive stack/structure and method of manufacturing same comprising wherein the stack/structure includes a seed region, a fixed magnetic region disposed on and in contact with the seed region, a dielectric layer(s) disposed on the fixed magnetic region and a free magnetic region disposed on the dielectric layer(s). In one embodiment, the seed region comprises an alloy including nickel and chromium having (i) a thickness greater than or equal to 40 Angstroms (+/?10%) and less than or equal to 60 Angstroms (+/?10%), and (ii) a material composition or content of chromium within a range of 25-60 atomic percent (+/?10%) or 30-50 atomic percent (+/?10%).
    Type: Application
    Filed: November 19, 2018
    Publication date: April 25, 2019
    Applicant: Everspin Technologies, Inc.
    Inventors: Jijun SUN, Sanjeev Aggarwal, Han-Jong Chia, Jon M. Slaughter, Renu Whig
  • Publication number: 20190115060
    Abstract: Spin-orbit-torque (SOT) control strip lines are provided along the sides of free layers in perpendicular magnetic tunnel junction devices. Current flowing through such SOT control strip lines injects spin current into the free layers such that spin torque is applied to the free layers. The spin torque can be used to force the magnetic state of the free layer to a particular state based on the direction of the current through the SOT control strip line. In other embodiments, the SOT provides an assist to spin-transfer torque generated by current flowing vertically through the magnetic tunnel junction. Some embodiments have dedicated strip lines for a single magnetic tunnel junction such that a three-terminal device results.
    Type: Application
    Filed: October 11, 2018
    Publication date: April 18, 2019
    Applicant: Everspin Technologies, Inc.
    Inventors: Sarin DESHPANDE, Sanjeev AGGARWAL, Jason JANESKY, Jon SLAUGHTER, Phillip LOPRESTI
  • Publication number: 20190103554
    Abstract: A method of fabricating a magnetoresistive bit from a magnetoresistive stack includes etching through a first portion of the magnetoresistive stack using a first etch process to form one or more sidewalls. At least a portion of the sidewalls includes redeposited material after the etching. The method also includes modifying at least a portion of the redeposited material on the sidewalls, and etching through a second portion of the magnetoresistive stack after the modifying step. The magnetoresistive stack may include a first magnetic region, an intermediate region disposed over the first magnetic region, and a second magnetic region disposed over the intermediate region.
    Type: Application
    Filed: August 21, 2018
    Publication date: April 4, 2019
    Applicant: Everspin Technologies, Inc.
    Inventors: Sanjeev AGGARWAL, Sarin A. Deshpande, Kerry Joseph Nagel
  • Publication number: 20190103555
    Abstract: A method of manufacturing one or more interconnects to magnetoresistive structure comprising (i) depositing a first conductive material in a via; (2) etching the first conductive material wherein, after etching the first conductive material a portion of the first conductive material remains in the via, (3) partially filling the via by depositing a second conductive material in the via and directly on the first conductive material in the via; (4) depositing a first electrode material in the via and directly on the second conductive material in the via; (5) polishing a first surface of the first electrode material wherein, after polishing, the first electrode material is (i) on the second conductive material in the via and (ii) over the portion of the first conductive material remaining in the via; and (6) forming a magnetoresistive structure over the first electrode material.
    Type: Application
    Filed: November 19, 2018
    Publication date: April 4, 2019
    Applicant: Everspin Technologies, Inc.
    Inventors: Kerry Joseph NAGEL, Kenneth H. SMITH, Moazzem HOSSAIN, Sanjeev AGGARWAL
  • Patent number: 10230046
    Abstract: A magnetoresistive structure having two dielectric layers, and method of manufacturing same, includes a free magnetic layer positioned between the two dielectric layers. The method of manufacture comprises at least two etch processes and at least one encapsulation process interposed therebetween wherein the encapsulation is formed on sidewalls of the partially formed magnetoresistive stack between etch processes. For example, an exemplary method of manufacturing a magnetoresistive device includes etching through a second electrode, second dielectric layer and free magnetic layer to provide a sidewall of (i) an unpinned synthetic antiferromagnetic structure, (ii) a second dielectric layer and (iii) a free magnetic layer; thereafter, forming an encapsulation material on the sidewall of the unpinned synthetic antiferromagnetic structure, second dielectric layer and free magnetic layer, and after forming the encapsulation material, etching through a first dielectric layer.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: March 12, 2019
    Assignee: Everspin Technologies, Inc.
    Inventors: Sanjeev Aggarwal, Kerry Nagel, Jason Janesky
  • Publication number: 20190067566
    Abstract: A method of fabricating a magnetoresistive bit from a magnetoresistive stack includes (a) etching through at least a portion of a thickness of the surface region to create a first set of exposed areas in the form of multiple strips extending in a first direction, and (b) etching through at least a portion of a thickness of the surface region to create a second set of exposed areas in the form of multiple strips extending in a second direction. The first set of exposed areas and the second set of exposed areas may have multiple areas that overlap. The method may also include, (c) after the etching in (a) and (b), etching through at least a portion of the thickness of the magnetoresistive stack through the first set and second set of exposed areas.
    Type: Application
    Filed: August 22, 2018
    Publication date: February 28, 2019
    Applicant: Everspin Technologies, Inc.
    Inventors: Kerry Joseph NAGEL, Sanjeev AGGARWAL, Sarin A. DESHPANDE
  • Publication number: 20190043921
    Abstract: Magnetoresistive device architectures and methods for manufacturing are presented that facilitate integration of process steps associated with forming such devices into standard process flows used for surrounding logic/circuitry. In some embodiments, the magnetoresistive device structures are designed such that the devices are able to fit within the vertical dimensions of the integrated circuit associated with a single metal layer and a single layer of interlayer dielectric material. Integrating the processing for the magnetoresistive devices can include using the same standard interlayer dielectric material as used in the surrounding circuits on the integrated circuit as well as using standard vias to interconnect to at least one of the electrodes of the magnetoresistive devices.
    Type: Application
    Filed: September 26, 2018
    Publication date: February 7, 2019
    Applicant: Everspin Technologies, Inc.
    Inventors: Thomas ANDRE, Sanjeev AGGARWAL, Kerry Joseph NAGEL, Sarin A. DESHPANDE
  • Publication number: 20180375018
    Abstract: A method of manufacturing a magnetoresistive stack/structure comprising (a) etching through a second magnetic region to (i) provide sidewalls of the second magnetic region and (ii) expose a surface of a dielectric layer, (b) depositing a first encapsulation layer on the sidewalls of the second magnetic region and over a surface of the dielectric layer, (c) thereafter: (i) etching the first encapsulation layer which is disposed over the dielectric layer using a first etch process, and (ii) etching re-deposited material using a second etch process, wherein, after such etching, a portion of the first encapsulation layer remains on the sidewalls of the second magnetic region, (d) etching (i) through the dielectric layer to form a tunnel barrier and provide sidewalls thereof and (ii) etching the first magnetic region to provide sidewalls thereof, and (e) depositing a second encapsulation layer on the sidewalls of the tunnel barrier and first magnetic region.
    Type: Application
    Filed: July 31, 2018
    Publication date: December 27, 2018
    Applicant: Everspin Technologies, Inc.
    Inventors: Sarin A. DESHPANDE, Kerry Joseph NAGEL, Chaitanya MUDIVARTHI, Sanjeev AGGARWAL
  • Patent number: 10164176
    Abstract: A method of manufacturing one or more interconnects to a magnetoresistive structure, the method comprising depositing a first conductive material (i) in a via which is formed through a first surface of a first dielectric layer and (ii) directly on the first surface of the first dielectric layer. The method further includes etching the first conductive material wherein, after etching the first conductive material, a portion of the first conductive material remains (i) in the via and (ii) directly on the first surface of the first dielectric layer. The method also includes partially filling the via by depositing a second conductive material (i) in the via and (ii) directly on the first conductive material remaining in the via, depositing a first electrode material (i) in the via and (ii) directly on the second conductive material which is in the via, and forming a magnetoresistive structure over the first electrode material.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: December 25, 2018
    Assignee: Everspin Technologies, Inc.
    Inventors: Kerry Joseph Nagel, Kenneth Smith, Moazzem Hossain, Sanjeev Aggarwal
  • Publication number: 20180342670
    Abstract: A magnetoresistive-based device and method of manufacturing a magnetoresistive-based device using one or more hard masks. The process of manufacture, in one embodiment, includes patterning a mask, after patterning the mask, etching (a) through a first layer of electrically conductive material to form an electrically conductive electrode and (b) through a third layer of ferromagnetic material to provide sidewalls of the second synthetic antiferromagnetic structure. The process further includes providing insulating material on or over the sidewalls of the second synthetic antiferromagnetic structure and, thereafter, etching through (a) a second tunnel barrier layer to provide sidewalls thereof, (b) a second layer of ferromagnetic material to provide sidewalls thereof, (c) a first tunnel barrier layer to provide sidewalls thereof, and (d) a first layer of ferromagnetic material to provide sidewalls of the first synthetic antiferromagnetic structure.
    Type: Application
    Filed: August 2, 2018
    Publication date: November 29, 2018
    Applicant: Everspin Technologies, Inc.
    Inventors: Sarin A. DESHPANDE, Sanjeev AGGARWAL, Kerry Joseph NAGEL
  • Publication number: 20180309051
    Abstract: The present disclosure is drawn to, among other things, a method of fabricating an integrated circuit device having a magnetoresistive device. In some aspects, the method includes forming the magnetoresistive device on a first contact of a substrate, wherein the magnetoresistive device includes a fixed magnetic region and a free magnetic region separated by an intermediate region; depositing a first dielectric material over the magnetoresistive device; depositing a second dielectric material over the first dielectric material; polishing a surface of the second dielectric material; forming a first cavity through the polished surface of the second dielectric material to expose a surface of the magnetoresistive device; and depositing an electrically conductive material in the first cavity to form a via.
    Type: Application
    Filed: April 20, 2018
    Publication date: October 25, 2018
    Applicant: Everspin Technologies, Inc.
    Inventors: Sarin A. DESHPANDE, Sanjeev AGGARWAL, Moazzem HOSSAIN