Patents by Inventor Sanjiv Garg

Sanjiv Garg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030079113
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Application
    Filed: October 29, 2002
    Publication date: April 24, 2003
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Publication number: 20030070060
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Application
    Filed: October 30, 2002
    Publication date: April 10, 2003
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Publication number: 20030056087
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Application
    Filed: October 30, 2002
    Publication date: March 20, 2003
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Publication number: 20030056086
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Application
    Filed: October 29, 2002
    Publication date: March 20, 2003
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Publication number: 20030005260
    Abstract: A register renaming system for out-of-order execution of a set of reduced instruction set computer instructions having addressable source and destination register fields, adapted for use in a computer having an instruction execution unit with a register file accessed by read address ports and for storing instruction operands. A data dependance check circuit is included for determining data dependencies between the instructions. A tag assignment circuit generates one or more tags to specify the location of operands, based on the data dependencies determined by the data dependance check circuit. A set of register file port multiplexers select the tags generated by the tag assignment circuit and pass the tags onto the read address ports of the register file for storing execution results.
    Type: Application
    Filed: March 1, 2002
    Publication date: January 2, 2003
    Inventors: Sanjiv Garg, Kevin Ray Iadonato, Le Trong Nguyen, Johannes Wang
  • Publication number: 20020194456
    Abstract: A system and method for performing register renaming of source registers in a processor having a variable advance instruction window for storing a group of instructions to be executed by the processor, wherein a new instruction is added to the variable advance instruction window when a location becomes available. A tag is assigned to each instruction in the variable advance instruction window. The tag of each instruction to leave the window is assigned to the next new instruction to be added to it. The results of instructions executed by the processor are stored in a temp buffer according to their corresponding tags to avoid output and anti-dependencies. The temp buffer therefore permits the processor to execute instructions out of order and in parallel. Data dependency checks for input dependencies are performed only for each new instruction added to the variable advance instruction window and register renaming is performed to avoid input dependencies.
    Type: Application
    Filed: August 19, 2002
    Publication date: December 19, 2002
    Inventors: Trevor A. Deosaran, Sanjiv Garg, Kevin R. Iadonato
  • Publication number: 20020178347
    Abstract: An system and method for retiring instructions in a superscalar microprocessor which executes a program comprising a set of instructions having a predetermined program order, the retirement system for simultaneously retiring groups of instructions executed in or out of order by the microprocessor. The retirement system comprises a done block for monitoring the status of the instructions to determine which instruction or group of instructions have been executed, a retirement control block for determining whether each executed instruction is retirable, a temporary buffer for storing results of instructions executed out of program order, and a register array for storing retirable-instruction results.
    Type: Application
    Filed: May 22, 2002
    Publication date: November 28, 2002
    Inventors: Johannes Wang, Sanjiv Garg, Trevor Deosaran
  • Publication number: 20020083300
    Abstract: A system and method for performing register renaming of source registers in a processor having a variable advance instruction window for storing a group of instructions to be executed by the processor, wherein a new instruction is added to the variable advance instruction window when a location becomes available. A tag is assigned to each instruction in the variable advance instruction window. The tag of each instruction to leave the window is assigned to the next new instruction to be added to it. The results of instructions executed by the processor are stored in a temp buffer according to their corresponding tags to avoid output and anti-dependencies. The temp buffer therefore permits the processor to execute instructions out of order and in parallel. Data dependency checks for input dependencies are performed only for each new instruction added to the variable advance instruction window and register renaming is performed to avoid input dependencies.
    Type: Application
    Filed: February 27, 2002
    Publication date: June 27, 2002
    Inventors: Trevor A. Deosaran, Sanjiv Garg, Kevin R. Iadonato
  • Patent number: 6412064
    Abstract: An system and method for retiring instructions in a superscalar microprocessor which executes a program comprising a set of instructions having a predetermined program order, the retirement system for simultaneously retiring groups of instructions executed in or out of order by the microprocessor. The retirement system comprises a done block for monitoring the status of the instructions to determine which instruction or group of instructions have been executed, a retirement control block for determining whether each executed instruction is retirable, a temporary buffer for storing results of instructions executed out of program order, and a register array for storing retirable-instruction results.
    Type: Grant
    Filed: August 2, 2000
    Date of Patent: June 25, 2002
    Assignee: Seiko Epson Corporation
    Inventors: Johannes Wang, Sanjiv Garg, Trevor Deosaran
  • Patent number: 6408375
    Abstract: A system and method for performing register renaming of source registers in a processor having a variable advance instruction window for storing a group of instructions to be executed by the processor, wherein a new instruction is added to the variable advance instruction window when a location becomes available. A tag is assigned to each instruction in the variable advance instruction window. The tag of each instruction to leave the window is assigned to the next new instruction to be added to it. The results of instructions executed by the processor are stored in a temp buffer according to their corresponding tags to avoid output and anti-dependencies. The temp buffer therefore permits the processor to execute instructions out of order and in parallel. Data dependency checks for input dependencies are performed only for each new instruction added to the variable advance instruction window and register renaming is performed to avoid input dependencies.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: June 18, 2002
    Assignee: Seiko Epson Corporation
    Inventors: Trevor A. Deosaran, Sanjiv Garg, Kevin R. Iadonato
  • Publication number: 20020053014
    Abstract: A tag monitoring system for assigning tags to instructions. A source supplies instructions to be executed by a functional unit. A register file stores information required for the execution of each instruction. A queue having a plurality of slots containing tags which are used for tagging the instructions. The tags are arranged in the queue in an order specified by the program order of their corresponding instructions. A control unit monitors the completion of executed instructions and advances the tags in the queue upon completion of an executed instruction. The register file stores an instruction's information at a location in the register file defined by the tag assigned to that instruction. The register file also contains a plurality of read address enable ports and corresponding read output ports. Each of the slots from the queue is coupled to a corresponding one of the read address enable ports. Thus, the information for each instruction can be read out of the register file in program order.
    Type: Application
    Filed: January 3, 2002
    Publication date: May 2, 2002
    Inventors: Kevin R. Iadonato, Trevor A. Deosaran, Sanjiv Garg
  • Patent number: 6360309
    Abstract: A tag monitoring system for assigning tags to instructions. A source supplies instructions to be executed by a functional unit. A register file stores information required for the execution of each instruction. A queue having a plurality of slots containing tags which are used for tagging the instructions. The tags are arranged in the queue in an order specified by the program order of their corresponding instructions. A control unit monitors the completion of executed instructions and advances the tags in the queue upon completion of an executed instruction. The register file stores an instruction's information at a location in the register file defined by the tag assigned to that instruction. The register file also contains a plurality of read address enable ports and corresponding read output ports. Each of the slots from the queue is coupled to a corresponding one of the read address enable ports. Thus, the information for each instruction can be read out of the register file in program order.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: March 19, 2002
    Assignee: Seiko Epson Corporation
    Inventors: Kevin R. Iadonato, Trevor A. Deosaran, Sanjiv Garg
  • Publication number: 20020029328
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Application
    Filed: May 10, 2001
    Publication date: March 7, 2002
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Publication number: 20020016903
    Abstract: The high-performance, RISC core based microprocessor architecture includes an instruction fetch unit for fetching instruction sets from an instruction store and an execution unit that implements the concurrent execution of a plurality of instructions through a parallel array of functional units. The fetch unit generally maintains a predetermined number of instructions in an instruction buffer. The execution unit includes an instruction selection unit, coupled to the instruction buffer, for selecting instructions for execution, and a plurality of functional units for performing instruction specified functional operations. A unified instruction scheduler, within the instruction selection unit, initiates the processing of instructions through the functional units when instructions are determined to be available for execution and for which at least one of the functional units implementing a necessary computational function is available.
    Type: Application
    Filed: May 8, 2001
    Publication date: February 7, 2002
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Publication number: 20010034823
    Abstract: A register system for a data processor which operates in a plurality of modes. The register system provides multiple, identical banks of register sets, the data processor controlling access such that instructions and processes need not specify any given bank. An integer register set includes first (RA[23:0]) and second (RA[31:24]) subsets, and a shadow subset (RT[31:24]). While the data processor is in a first mode, instructions access the first and second subsets. While the data processor is in a second mode, instructions may access the first subset, but any attempts to access the second subset are re-routed to the shadow subset instead, transparently to the instructions, allowing system routines to seemingly use the second subset without having to save and restore data which user routines have written to the second subset.
    Type: Application
    Filed: April 24, 2001
    Publication date: October 25, 2001
    Inventors: Sanjiv Garg, Derek J. Lentz, Le Trong Nguyen, Sho Long Chen
  • Patent number: 6289433
    Abstract: A register renaming system for out-of-order execution of a set of reduced instruction set computer instructions having addressable source and destination register fields, adapted for use in a computer having an instruction execution unit with a register file accessed by read address ports and for storing instruction operands. A data dependence check circuit is included for determining data dependencies between the instructions. A tag assignment circuit generates one of more tags to specify the location of operands, based on the data dependencies determined by the data dependence check circuit. A set of register file port multiplexers select the tags generated by the tag assignment circuit and pass the tags onto the read address ports of the register file for storing execution results.
    Type: Grant
    Filed: June 10, 1999
    Date of Patent: September 11, 2001
    Assignee: Transmeta Corporation
    Inventors: Sanjiv Garg, Kevin Ray Iadonato, Le Trong Nguyen, Johannes Wang
  • Patent number: 6282630
    Abstract: The high-performance, RISC core based microprocessor architecture includes an instruction fetch unit for fetching instruction sets from an instruction store and an execution unit that implements the concurrent execution of a plurality of instructions through a parallel array of functional units. The fetch unit generally maintains a predetermined number of instructions in an instruction buffer. The execution unit includes an instruction selection unit, coupled to the instruction buffer, for selecting instructions for execution, and a plurality of functional units for performing instruction specified functional operations. A unified instruction scheduler, within the instruction selection unit, initiates the processing of instructions through the functional units when instructions are determined to be available for execution and for which at least one of the functional units implementing a necessary computational function is available.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: August 28, 2001
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 6272619
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instructions in-order.
    Type: Grant
    Filed: November 10, 1999
    Date of Patent: August 7, 2001
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 6272617
    Abstract: A system and method for performing register renaming of source registers in a processor having a variable advance instruction window for storing a group of instructions to be executed by the processor, wherein a new instruction is added to the variable advance instruction window when a location becomes available. A tag is assigned to each instruction in the variable advance instruction window. The tag of each instruction to leave the window is assigned to the next new instruction to be added to it. The results of instructions executed by the processor are stored in a temp buffer according to their corresponding tags to avoid output and anti-dependencies. The temp buffer therefore permits the processor to execute instructions out of order and in parallel. Data dependency checks for input dependencies are performed only for each new instruction added to the variable advance instruction window and register renaming is performed to avoid input dependencies.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: August 7, 2001
    Assignee: Seiko Epson Corporation
    Inventors: Trevor A. Deosaran, Sanjiv Garg, Kevin R. Iadonato
  • Publication number: 20010011343
    Abstract: A system and method for performing register renaming of source registers in a processor having a variable advance instruction window for storing a group of instructions to be executed by the processor, wherein a new instruction is added to the variable advance instruction window when a location becomes available. A tag is assigned to each instruction in the variable advance instruction window. The tag of each instruction to leave the window is assigned to the next new instruction to be added to it. The results of instructions executed by the processor are stored in a temp buffer according to their corresponding tags to avoid output and anti-dependencies. The temp buffer therefore permits the processor to execute instructions out of order and in parallel. Data dependency checks for input dependencies are performed only for each new instruction added to the variable advance instruction window and register renaming is performed to avoid input dependencies.
    Type: Application
    Filed: April 5, 2001
    Publication date: August 2, 2001
    Inventors: Trevor A. Deosaran, Sanjiv Garg, Kevin R. Iadonato