Patents by Inventor Sanjiv Garg

Sanjiv Garg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6256720
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instructions in-order.
    Type: Grant
    Filed: November 9, 1999
    Date of Patent: July 3, 2001
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 6138231
    Abstract: A system and method for performing register renaming of source registers in a processor having a variable advance instruction window for storing a group of instructions to be executed by the processor, wherein a new instruction is added to the variable advance instruction window when a location becomes available. A tag is assigned to each instruction in the variable advance instruction window. The tag of each instruction to leave the window is assigned to the next new instruction to be added to it. The results of instructions executed by the processor are stored in a temp buffer according to their corresponding tags to avoid output and anti-dependencies. The temp buffer therefore permits the processor to execute instructions out of order and in parallel. Data dependency checks for input dependencies are performed only for each new instruction added to the variable advance instruction window and register renaming is performed to avoid input dependencies.
    Type: Grant
    Filed: April 21, 1998
    Date of Patent: October 24, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Trevor A. Deosaran, Sanjiv Garg, Kevin R. Iadonato
  • Patent number: 6131157
    Abstract: An system and method for retiring instructions in a superscalar microprocessor which executes a program comprising a set of instructions having a predetermined program order, the retirement system for simultaneously retiring groups of instructions executed in or out of order by the microprocessor. The retirement system comprises a done block for monitoring the status of the instructions to determine which instruction or group of instructions have been executed, a retirement control block for determining whether each executed instruction is retirable, a temporary buffer for storing results of instructions executed out of program order, and a register array for storing retirable-instruction results.
    Type: Grant
    Filed: January 20, 1998
    Date of Patent: October 10, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Johannes Wang, Sanjiv Garg, Trevor Dcosaran
  • Patent number: 6128723
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instructions in-order.
    Type: Grant
    Filed: May 11, 1999
    Date of Patent: October 3, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 6101594
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instructions in-order.
    Type: Grant
    Filed: May 11, 1999
    Date of Patent: August 8, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 6092176
    Abstract: A tag monitoring system for assigning tags to instructions. A source supplies instructions to be executed by a functional unit. A register file stores information required for the execution of each instruction. A queue having a plurality of slots containing tags which are used for tagging the instructions. The tags are arranged in the queue in an order specified by the program order of their corresponding instructions. A control unit monitors the completion of executed instructions and advances the tags in the queue upon completion of an executed instruction. The register file stores an instruction's information at a location in the register file defined by the tag assigned to that instruction. The register file also contains a plurality of read address enable ports and corresponding read output ports. Each of the slots from the queue is coupled to a corresponding one of the read address enable ports. Thus, the information for each instruction can be read out of the register file in program order.
    Type: Grant
    Filed: February 19, 1999
    Date of Patent: July 18, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Kevin R. Iadonato, Trevor A. Deosaran, Sanjiv Garg
  • Patent number: 6092181
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instructions in-order.
    Type: Grant
    Filed: October 7, 1997
    Date of Patent: July 18, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 6038654
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instructions in-order.
    Type: Grant
    Filed: June 23, 1999
    Date of Patent: March 14, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 6038653
    Abstract: The high-performance, RISC core based microprocessor architecture includes an instruction fetch unit for fetching instruction sets from an instruction store and an execution unit that implements the concurrent execution of a plurality of instructions through a parallel array of functional units. The fetch unit generally maintains a predetermined number of instructions in an instruction buffer. The execution unit includes an instruction selection unit, coupled to the instruction buffer, for selecting instructions for execution, and a plurality of functional units for performing instruction specified functional operations. A unified instruction scheduler, within the instruction selection unit, initiates the processing of instructions through the functional units when instructions are determined to be available for execution and for which at least one of the functional units implementing a necessary computational function is available.
    Type: Grant
    Filed: September 22, 1998
    Date of Patent: March 14, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 5974526
    Abstract: A register renaming system for out-of-order execution of a set of reduced instruction set computer instructions having addressable source and destination register fields, adapted for use in a computer having an instruction execution unit with a register file accessed by read address ports and for storing instruction operands. A data dependance check circuit is included for determining data dependencies between the instructions. A tag assignment circuit generates one of more tags to specify the location of operands, based on the data dependencies determined by the data dependance check circuit. A set of register file port multiplexers select the tags generated by the tag assignment circuit and pass the tags onto the read address ports of the register file for storing execution results.
    Type: Grant
    Filed: December 15, 1997
    Date of Patent: October 26, 1999
    Assignee: Seiko Corporation
    Inventors: Sanjiv Garg, Kevin Ray Iadonato, Le Trong Nguyen, Johannes Wang
  • Patent number: 5961629
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instructions in-order.
    Type: Grant
    Filed: September 10, 1998
    Date of Patent: October 5, 1999
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 5896542
    Abstract: A tag monitoring system for assigning tags to instructions. A source supplies instructions to be executed by a functional unit. A register file stores information required for the execution of each instruction. A queue having a plurality of slots containing tags which are used for tagging the instructions. The tags are arranged in the queue in an order specified by the program order of their corresponding instructions. A control unit monitors the completion of executed instructions and advances the tags in the queue upon completion of an executed instruction. The register file stores an instruction's information at a location in the register file defined by the tag assigned to that instruction. The register file also contains a plurality of read address enable ports and corresponding read output ports. Each of the slots from the queue is coupled to a corresponding one of the read address enable ports. Thus, the information for each instruction can be read out of the register file in program order.
    Type: Grant
    Filed: March 3, 1997
    Date of Patent: April 20, 1999
    Assignee: Seiko Epson Corporation
    Inventors: Kevin R. Iadonato, Trevor A. Deosaran, Sanjiv Garg
  • Patent number: 5892963
    Abstract: Tag monitoring system for assigning tags to instructions. A memory unit stores instructions to be executed by an execution unit. Before execution an instruction fetch unit decodes the instructions. A register file stores the decoded instructions. A queue having a plurality of slots containing tags which are used for tagging the decoded instructions. A control unit assigns the tags to decoded instructions, monitors the completion of executed instructions, and advances the tags in the queue upon completion of an executed instruction. The register stores a given decoded instruction at an address location in the register file defined by the tag assigned to that instruction. The register file also contains a plurality of read address enable ports and corresponding read output ports. Each of the slots from the queue is coupled to a corresponding one of the read address enable ports.
    Type: Grant
    Filed: February 13, 1997
    Date of Patent: April 6, 1999
    Assignee: Seiko Epson Corporation
    Inventors: Kevin Ray Iadonato, Trevor Anthony Deosaran, Sanjiv Garg
  • Patent number: 5838986
    Abstract: A register system for a data processor which operates in a plurality of modes. The register system provides multiple, identical banks of register sets, the data processor controlling access such that instructions and processes need not specify any given bank. An integer register set includes first (RA?23:0!) and second (RA?31:24!) subsets, and a shadow subset (RT?31:24!). While the data processor is in a first mode, instructions access the first and second subsets. While the data processor is in a second mode, instructions may access the first subset, but any attempts to access the second subset are re-routed to the shadow subset instead, transparently to the instructions, allowing system routines to seemingly use the second subset without having to save and restore data which user routines have written to the second subset. A re-typable register set provides integer width data and floating point width data in response to integer instructions and floating point instructions, respectively.
    Type: Grant
    Filed: September 25, 1997
    Date of Patent: November 17, 1998
    Assignee: Seiko Epson Corporation
    Inventors: Sanjiv Garg, Derek J. Lentz, Le Trong Nguyen, Sho Long Chen
  • Patent number: 5832292
    Abstract: The high-performance, RISC core based microprocessor architecture includes an instruction fetch unit for fetching instruction sets from an instruction store and an execution unit that implements the concurrent execution of a plurality of instructions through a parallel array of functional units. The fetch unit generally maintains a predetermined number of instructions in an instruction buffer. The execution unit includes an instruction selection unit, coupled to the instruction buffer, for selecting instructions for execution, and a plurality of functional units for performing instruction specified functional operations. A unified instruction scheduler, within the instruction selection unit, initiates the processing of instructions through the functional units when instructions are determined to be available for execution and for which at least one of the functional units implementing a necessary computational function is available.
    Type: Grant
    Filed: September 23, 1996
    Date of Patent: November 3, 1998
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 5826055
    Abstract: An system and method for retiring instructions in a superscalar microprocessor which executes a program comprising a set of instructions having a predetermined program order, the retirement system for simultaneously retiring groups of instructions executed in or out of order by the microprocessor. The retirement system comprises a done block for monitoring the status of the instructions to determine which instruction or group of instructions have been executed, a retirement control block for determining whether each executed instruction is retirable, a temporary buffer for storing results of instructions executed out of program order, and a register array for storing retirable-instruction results.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 20, 1998
    Assignee: Seiko Epson Corporation
    Inventors: Johannes Wang, Sanjiv Garg, Trevor Deosaran
  • Patent number: 5809276
    Abstract: A system and method for performing register renaming of source registers in a processor having a variable advance instruction window for storing a group of instructions to be executed by the processor, wherein a new instruction is added to the variable advance instruction window when a location becomes available. A tag is assigned to each instruction in the variable advance instruction window. The tag of each instruction to leave the window is assigned to the next new instruction to be added to it. The results of instructions executed by the processor are stored in a temp buffer according to their corresponding tags to avoid output and anti-dependencies. The temp buffer therefore permits the processor to execute instructions out of order and in parallel. Data dependency checks for input dependencies are performed only for each new instruction added to the variable advance instruction window and register renaming is performed to avoid input dependencies.
    Type: Grant
    Filed: August 15, 1996
    Date of Patent: September 15, 1998
    Assignee: Seiko Epson Corporation
    Inventors: Trevor A. Deosaran, Sanjiv Garg, Kevin R. Iadonato
  • Patent number: 5737624
    Abstract: A register renaming system for out-of-order execution of a set of reduced instruction set computer instructions having addressable source and destination register fields, adapted for use in a computer having an instruction execution unit with a register file accessed by read address ports and for storing instruction operands. A data dependence check circuit is included for determining data dependencies between the instructions. A tag assignment circuit generates one of more tags to specify the location of operands, based on the data dependencies determined by the data dependence check circuit. A set of register file port multiplexers select the tags generated by the tag assignment circuit and pass the tags onto the read address ports of the register file for storing execution results.
    Type: Grant
    Filed: January 31, 1996
    Date of Patent: April 7, 1998
    Assignee: Seiko Epson Corporation
    Inventors: Sanjiv Garg, Kevin Ray Iadonato, Le Trong Nguyen, Johannes Wang
  • Patent number: 5689720
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches and stores program instruction sets. Each instruction set includes a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instruction sets and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers which are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instructions in-order.
    Type: Grant
    Filed: February 15, 1996
    Date of Patent: November 18, 1997
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 5682546
    Abstract: A register system for a data processor which operates in a plurality of modes. The register system provides multiple, identical banks of register sets, the data processor controlling access such that instructions and processes need not specify any given bank. An integer register set includes first (RA?23:0!) and second (RA?31:24!) subsets, and a shadow subset (RT?31:24!). While the data processor is in a first mode, instructions access the first and second subsets. While the data processor is in a second mode, instructions may access the first subset, but any attempts to access the second subset are re-routed to the shadow subset instead, transparently to the instructions, allowing system routines to seemingly use the second subset without having to save and restore data which user routines have written to the second subset. A re-typable register set provides integer width data and floating point width data in response to integer instructions and floating point instructions, respectively.
    Type: Grant
    Filed: June 19, 1996
    Date of Patent: October 28, 1997
    Assignee: Seiko Epson Corporation
    Inventors: Sanjiv Garg, Derek J. Lentz, Le Trong Nguyen, Sho Long Chen