Patents by Inventor Scott J. H. Limb

Scott J. H. Limb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10648491
    Abstract: A stress-engineered frangible structure includes multiple discrete glass members interconnected by inter-structure bonds to form a complex structural shape. Each glass member includes strengthened (i.e., by way of stress-engineering) glass material portions that are configured to transmit propagating fracture forces throughout the glass member. Each inter-structure bond includes a bonding member (e.g., glass-frit or adhesive) connected to weaker (e.g., untreated, unstrengthened, etched, or thinner) glass member region(s) disposed on one or both interconnected glass members that function to reliably transfer propagating fracture forces from one glass member to other glass member. An optional trigger mechanism generates an initial fracture force in a first (most-upstream) glass member, and the resulting propagating fracture forces are transferred by way of inter-structure bonds to all downstream glass members.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: May 12, 2020
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Scott J. H. Limb, Gregory L. Whiting
  • Patent number: 10626048
    Abstract: A method of masking glass in an ion exchange bath includes applying a dissolvable sealant to a cover material, adhering the cover material to a glass part to form a mask on the glass part, immersing the glass part into an ion exchange bath. removing the glass part from the ion exchange bath, and using a solvent to dissolve the sealant and the cover material from the glass part. A mask on glass having a piece of glass, and a dissolvable sealant on a cover material, the dissolvable sealant comprising an inorganic material and a silicate, the dissolvable sealant between the cover material and the piece of glass.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: April 21, 2020
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Erica Ronchetto, Scott J. H. Limb, Robert D. Fosdyck
  • Publication number: 20200027847
    Abstract: A transient electronic device utilizes a glass-based interposer that is treated using ion-exchange processing to increase its fragility, and includes a trigger device operably mounted on a surface thereof. An integrated circuit (IC) die is then bonded to the interposer, and the interposer is mounted to a package structure where it serves, under normal operating conditions, to operably connect the IC die to the package I/O pins/balls. During a transient event (e.g., when unauthorized tampering is detected), a trigger signal is transmitted to the trigger device, causing the trigger device to generate an initial fracture force that is applied onto the glass-based interposer substrate. The interposer is configured such that the initial fracture force propagates through the glass-based interposer substrate with sufficient energy to both entirely powderize the interposer, and to transfer to the IC die, whereby the IC die also powderizes (i.e., visually disappears).
    Type: Application
    Filed: April 16, 2019
    Publication date: January 23, 2020
    Inventors: Scott J.H. Limb, Gregory L. Whiting
  • Patent number: 10541215
    Abstract: A transient electronic device utilizes a glass-based interposer that is treated using ion-exchange processing to increase its fragility, and includes a trigger device operably mounted on a surface thereof. An integrated circuit (IC) die is then bonded to the interposer, and the interposer is mounted to a package structure where it serves, under normal operating conditions, to operably connect the IC die to the package I/O pins/balls. During a transient event (e.g., when unauthorized tampering is detected), a trigger signal is transmitted to the trigger device, causing the trigger device to generate an initial fracture force that is applied onto the glass-based interposer substrate. The interposer is configured such that the initial fracture force propagates through the glass-based interposer substrate with sufficient energy to both entirely powderize the interposer, and to transfer to the IC die, whereby the IC die also powderizes (i.e., visually disappears).
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: January 21, 2020
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Scott J. H. Limb, Gregory L. Whiting
  • Publication number: 20190186513
    Abstract: A stress-engineered frangible structure includes multiple discrete glass members interconnected by inter-structure bonds to form a complex structural shape. Each glass member includes strengthened (i.e., by way of stress-engineering) glass material portions that are configured to transmit propagating fracture forces throughout the glass member. Each inter-structure bond includes a bonding member (e.g., glass-frit or adhesive) connected to weaker (e.g., untreated, unstrengthened, etched, or thinner) glass member region(s) disposed on one or both interconnected glass members that function to reliably transfer propagating fracture forces from one glass member to other glass member. An optional trigger mechanism generates an initial fracture force in a first (most-upstream) glass member, and the resulting propagating fracture forces are transferred by way of inter-structure bonds to all downstream glass members.
    Type: Application
    Filed: February 12, 2019
    Publication date: June 20, 2019
    Inventors: Scott J. H. Limb, Gregory L. Whiting
  • Publication number: 20190185375
    Abstract: A method of masking glass in an ion exchange bath includes applying a dissolvable sealant to a cover material, adhering the cover material to a glass part to form a mask on the glass part, immersing the glass part into an ion exchange bath. removing the glass part from the ion exchange bath, and using a solvent to dissolve the sealant and the cover material from the glass part. A mask on glass having a piece of glass, and a dissolvable sealant on a cover material, the dissolvable sealant comprising an inorganic material and a silicate, the dissolvable sealant between the cover material and the piece of glass.
    Type: Application
    Filed: December 18, 2017
    Publication date: June 20, 2019
    Inventors: ERICA RONCHETTO, SCOTT J. H. LIMB, ROBERT D. FOSDYCK
  • Patent number: 10262954
    Abstract: A transient electronic device utilizes a glass-based interposer that is treated using ion-exchange processing to increase its fragility, and includes a trigger device operably mounted on a surface thereof. An integrated circuit (IC) die is then bonded to the interposer, and the interposer is mounted to a package structure where it serves, under normal operating conditions, to operably connect the IC die to the package I/O pins/balls. During a transient event (e.g., when unauthorized tampering is detected), a trigger signal is transmitted to the trigger device, causing the trigger device to generate an initial fracture force that is applied onto the glass-based interposer substrate. The interposer is configured such that the initial fracture force propagates through the glass-based interposer substrate with sufficient energy to both entirely powderize the interposer, and to transfer to the IC die, whereby the IC die also powderizes (i.e., visually disappears).
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: April 16, 2019
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Scott J. H. Limb, Gregory L. Whiting
  • Patent number: 10202990
    Abstract: A stress-engineered frangible structure includes multiple discrete glass members interconnected by inter-structure bonds to form a complex structural shape. Each glass member includes strengthened (i.e., by way of stress-engineering) glass material portions that are configured to transmit propagating fracture forces throughout the glass member. Each inter-structure bond includes a bonding member (e.g., glass-frit or adhesive) connected to weaker (e.g., untreated, unstrengthened, etched, or thinner) glass member region(s) disposed on one or both interconnected glass members that function to reliably transfer propagating fracture forces from one glass member to other glass member. An optional trigger mechanism generates an initial fracture force in a first (most-upstream) glass member, and the resulting propagating fracture forces are transferred by way of inter-structure bonds to all downstream glass members.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: February 12, 2019
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Scott J. H. Limb, Gregory L. Whiting
  • Publication number: 20180306218
    Abstract: A stress-engineered frangible structure includes multiple discrete glass members interconnected by inter-structure bonds to form a complex structural shape. Each glass member includes strengthened (i.e., by way of stress-engineering) glass material portions that are configured to transmit propagating fracture forces throughout the glass member. Each inter-structure bond includes a bonding member (e.g., glass-frit or adhesive) connected to weaker (e.g., untreated, unstrengthened, etched, or thinner) glass member region(s) disposed on one or both interconnected glass members that function to reliably transfer propagating fracture forces from one glass member to other glass member. An optional trigger mechanism generates an initial fracture force in a first (most-upstream) glass member, and the resulting propagating fracture forces are transferred by way of inter-structure bonds to all downstream glass members.
    Type: Application
    Filed: July 2, 2018
    Publication date: October 25, 2018
    Inventors: Scott J. H. Limb, Gregory L. Whiting
  • Patent number: 10012250
    Abstract: A stress-engineered frangible structure includes multiple discrete glass members interconnected by inter-structure bonds to form a complex structural shape. Each glass member includes strengthened (i.e., by way of stress-engineering) glass material portions that are configured to transmit propagating fracture forces throughout the glass member. Each inter-structure bond includes a bonding member (e.g., glass-frit or adhesive) connected to weaker (e.g., untreated, unstrengthened, etched, or thinner) glass member region(s) disposed on one or both interconnected glass members that function to reliably transfer propagating fracture forces from one glass member to other glass member. An optional trigger mechanism generates an initial fracture force in a first (most-upstream) glass member, and the resulting propagating fracture forces are transferred by way of inter-structure bonds to all downstream glass members.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: July 3, 2018
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Scott J. H. Limb, Gregory L. Whiting
  • Publication number: 20180005963
    Abstract: A transient electronic device utilizes a glass-based interposer that is treated using ion-exchange processing to increase its fragility, and includes a trigger device operably mounted on a surface thereof. An integrated circuit (IC) die is then bonded to the interposer, and the interposer is mounted to a package structure where it serves, under normal operating conditions, to operably connect the IC die to the package I/O pins/balls. During a transient event (e.g., when unauthorized tampering is detected), a trigger signal is transmitted to the trigger device, causing the trigger device to generate an initial fracture force that is applied onto the glass-based interposer substrate. The interposer is configured such that the initial fracture force propagates through the glass-based interposer substrate with sufficient energy to both entirely powderize the interposer, and to transfer to the IC die, whereby the IC die also powderizes (i.e., visually disappears).
    Type: Application
    Filed: August 29, 2017
    Publication date: January 4, 2018
    Inventors: Scott J.H. Limb, Gregory L. Whiting
  • Publication number: 20170292546
    Abstract: A stress-engineered frangible structure includes multiple discrete glass members interconnected by inter-structure bonds to form a complex structural shape. Each glass member includes strengthened (i.e., by way of stress-engineering) glass material portions that are configured to transmit propagating fracture forces throughout the glass member. Each inter-structure bond includes a bonding member (e.g., glass-frit or adhesive) connected to weaker (e.g., untreated, unstrengthened, etched, or thinner) glass member region(s) disposed on one or both interconnected glass members that function to reliably transfer propagating fracture forces from one glass member to other glass member. An optional trigger mechanism generates an initial fracture force in a first (most-upstream) glass member, and the resulting propagating fracture forces are transferred by way of inter-structure bonds to all downstream glass members.
    Type: Application
    Filed: April 6, 2016
    Publication date: October 12, 2017
    Inventors: Scott J. H. Limb, Gregory L. Whiting
  • Patent number: 9780044
    Abstract: A transient electronic device utilizes a glass-based interposer that is treated using ion-exchange processing to increase its fragility, and includes a trigger device operably mounted on a surface thereof. An integrated circuit (IC) die is then bonded to the interposer, and the interposer is mounted to a package structure where it serves, under normal operating conditions, to operably connect the IC die to the package I/O pins/balls. During a transient event (e.g., when unauthorized tampering is detected), a trigger signal is transmitted to the trigger device, causing the trigger device to generate an initial fracture force that is applied onto the glass-based interposer substrate. The interposer is configured such that the initial fracture force propagates through the glass-based interposer substrate with sufficient energy to both entirely powderize the interposer, and to transfer to the IC die, whereby the IC die also powderizes (i.e., visually disappears).
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: October 3, 2017
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Scott J. H. Limb, Gregory L. Whiting
  • Publication number: 20170084551
    Abstract: A transient electronic device utilizes a glass-based interposer that is treated using ion-exchange processing to increase its fragility, and includes a trigger device operably mounted on a surface thereof. An integrated circuit (IC) die is then bonded to the interposer, and the interposer is mounted to a package structure where it serves, under normal operating conditions, to operably connect the IC die to the package I/O pins/balls. During a transient event (e.g., when unauthorized tampering is detected), a trigger signal is transmitted to the trigger device, causing the trigger device to generate an initial fracture force that is applied onto the glass-based interposer substrate. The interposer is configured such that the initial fracture force propagates through the glass-based interposer substrate with sufficient energy to both entirely powderize the interposer, and to transfer to the IC die, whereby the IC die also powderizes (i.e., visually disappears).
    Type: Application
    Filed: April 23, 2015
    Publication date: March 23, 2017
    Inventors: Scott J. H. Limb, Gregory L. Whiting
  • Patent number: 9356603
    Abstract: A thermally tempered glass substrate for transient electronic systems (i.e., including electronic devices that visually disappear when triggered to do so) including two or more fused-together glass structures having different coefficient of thermal expansion (CTE) values disposed in an intermixed arrangement manner that generates and stores potential energy in the form of residual, self-equilibrating internal stresses. In alternative embodiments the substrate includes laminated glass sheets, or glass elements (e.g., beads or cylinders) disposed in a glass layer. A trigger device causes an initial fracture in the thermally tempered glass substrate, whereby the fracture energy nearly instantaneously travels throughout the thermally tempered glass substrate, causing the thermally tempered glass substrate to shatter into multiple small (e.g., micron-sized) pieces that are difficult to detect. Patterned fracture features are optionally provided to control the final fractured particle size.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: May 31, 2016
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Scott J. H. Limb, Gregory L. Whiting, Sean R. Garner
  • Publication number: 20150358021
    Abstract: A thermally tempered glass substrate for transient electronic systems (i.e., including electronic devices that visually disappear when triggered to do so) including two or more fused-together glass structures having different coefficient of thermal expansion (CTE) values disposed in an intermixed arrangement manner that generates and stores potential energy in the form of residual, self-equilibrating internal stresses. In alternative embodiments the substrate includes laminated glass sheets, or glass elements (e.g., beads or cylinders) disposed in a glass layer. A trigger device causes an initial fracture in the thermally tempered glass substrate, whereby the fracture energy nearly instantaneously travels throughout the thermally tempered glass substrate, causing the thermally tempered glass substrate to shatter into multiple small (e.g., micron-sized) pieces that are difficult to detect. Patterned fracture features are optionally provided to control the final fractured particle size.
    Type: Application
    Filed: April 23, 2015
    Publication date: December 10, 2015
    Inventors: Scott J.H. Limb, Gregory L. Whiting, Sean R. Garner
  • Patent number: 9154138
    Abstract: A stressed substrate for transient electronic systems (i.e., electronic systems that visually disappear when triggered to do so) that includes one or more stress-engineered layers that store potential energy in the form of a significant internal stress. An associated trigger mechanism is also provided that, when triggered, causes an initial fracture in the stressed substrate, whereby the fracture energy nearly instantaneously travels throughout the stressed substrate, causing the stressed substrate to shatter into multiple small (e.g., micron-sized) pieces that are difficult to detect. The internal stress is incorporated into the stressed substrate through strategies similar to glass tempering (for example through heat or chemical treatment), or by depositing thin-film layers with large amounts of stress. Patterned fracture features are optionally provided to control the final fractured particle size. Electronic systems built on the substrate are entirely destroyed and dispersed during the transience event.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: October 6, 2015
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Scott J. H. Limb, Gregory L. Whiting, Sean R. Garner, JengPing Lu, Dirk DeBruyker
  • Publication number: 20150102852
    Abstract: A stressed substrate for transient electronic systems (i.e., electronic systems that visually disappear when triggered to do so) that includes one or more stress-engineered layers that store potential energy in the form of a significant internal stress. An associated trigger mechanism is also provided that, when triggered, causes an initial fracture in the stressed substrate, whereby the fracture energy nearly instantaneously travels throughout the stressed substrate, causing the stressed substrate to shatter into multiple small (e.g., micron-sized) pieces that are difficult to detect. The internal stress is incorporated into the stressed substrate through strategies similar to glass tempering (for example through heat or chemical treatment), or by depositing thin-film layers with large amounts of stress. Patterned fracture features are optionally provided to control the final fractured particle size. Electronic systems built on the substrate are entirely destroyed and dispersed during the transience event.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 16, 2015
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Scott J. H. Limb, Gregory L. Whiting, Sean R. Garner, JengPing Lu, Dirk DeBruyker
  • Patent number: 8951825
    Abstract: Multicrystalline silicon (mc-Si) solar cells having patterned light trapping structures (e.g., pyramid or trough features) are generated by printing a liquid mask material from an array of closely-spaced parallel elongated conduits such that portions of the mc-Si wafer are exposed through openings defined between the printed mask features. Closely spaced mask pattern features are achieved using an array of conduits (e.g., micro-springs or straight polyimide cantilevers), where each conduit includes a slit-type, tube-type or ridge/valley-type liquid guiding channel that extends between a fixed base end and a tip end of the conduit such that mask material supplied from a reservoir is precisely ejected from the tip onto the mc-Si wafer. The exposed planar surface portions are then etched to form the desired patterned light trapping structures (e.g., trough structures).
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: February 10, 2015
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Scott J. H. Limb, Dirk DeBruyker, Sean Garner
  • Patent number: RE47570
    Abstract: A stressed substrate for transient electronic systems (i.e., electronic systems that visually disappear when triggered to do so) that includes one or more stress-engineered layers that store potential energy in the form of a significant internal stress. An associated trigger mechanism is also provided that, when triggered, causes an initial fracture in the stressed substrate, whereby the fracture energy nearly instantaneously travels throughout the stressed substrate, causing the stressed substrate to shatter into multiple small (e.g., micron-sized) pieces that are difficult to detect. The internal stress is incorporated into the stressed substrate through strategies similar to glass tempering (for example through heat or chemical treatment), or by depositing thin-film layers with large amounts of stress. Patterned fracture features are optionally provided to control the final fractured particle size. Electronic systems built on the substrate are entirely destroyed and dispersed during the transience event.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: August 13, 2019
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Scott J. H. Limb, Gregory L. Whiting, Sean R. Garner, JengPing Lu, Dirk De Bruyker