Patents by Inventor Scott Sills

Scott Sills has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120045891
    Abstract: Some embodiments include methods of forming patterns in substrates by utilizing block copolymer assemblies as patterning materials. A block copolymer assembly may be formed over a substrate, with the assembly having first and second subunits arranged in a pattern of two or more domains. Metal may be selectively coupled to the first subunits relative to the second subunits to form a pattern of metal-containing regions and non-metal-containing regions. At least some of the block copolymer may be removed to form a patterned mask corresponding to the metal-containing regions. A pattern defined by the patterned mask may be transferred into the substrate with one or more etches. In some embodiments, the patterning may be utilized to form integrated circuitry, such as, for example, gatelines.
    Type: Application
    Filed: November 3, 2011
    Publication date: February 23, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Dan Millward, Scott Sills
  • Publication number: 20120009784
    Abstract: An integrated circuit and a method of formation provide a contact area formed at an angled end of at least one linearly extending conductive line. In an embodiment, conductive lines with contact landing pads are formed by patterning lines in a mask material, cutting at least one of the material lines to form an angle relative to the extending direction of the material lines, forming extensions from the angled end faces of the mask material, and patterning an underlying conductor by etching using said material lines and extension as a mask. In another embodiment, at least one conductive line is cut at an angle relative to the extending direction of the conductive line to produce an angled end face, and an electrical contact landing pad is formed in contact with the angled end face.
    Type: Application
    Filed: September 19, 2011
    Publication date: January 12, 2012
    Inventors: Gurtej Sandhu, Scott Sills
  • Patent number: 8088551
    Abstract: Some embodiments include methods of forming patterns in which a block copolymer-containing composition is formed over a substrate, and is then patterned to form a first mask. The block copolymer of the composition is subsequently induced into forming a repeating pattern within the first mask. Portions of the repeating pattern are then removed to form a second mask from the first mask. The patterning of the block copolymer-containing composition may utilize photolithography. Alternatively, the substrate may have regions which wet differently relative to one another with respect to the block copolymer-containing composition, and the patterning of the first mask may utilize such differences in wetting in forming the first mask.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: January 3, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Scott Sills, Dan Millward
  • Publication number: 20110316021
    Abstract: Epitaxial growth methods and devices are described that include a textured surface on a substrate. Geometry of the textured surface provides a reduced lattice mismatch between an epitaxial material and the substrate. Devices formed by the methods described exhibit better interfacial adhesion and lower defect density than devices formed without texture. Silicon substrates are shown with gallium nitride epitaxial growth and devices such as LEDs are formed within the gallium nitride.
    Type: Application
    Filed: June 29, 2010
    Publication date: December 29, 2011
    Inventors: Anton deVilliers, Eric Byers, Scott Sills
  • Publication number: 20110298014
    Abstract: Some embodiments include cross-point memory structures. The structures may include a line of first electrode material extending along a first horizontal direction, a multi-sided container of access device materials over the first electrode material, a memory element material within the multi-sided container, and a line of second electrode material over the memory element material and extending along a second horizontal direction that is orthogonal to the first horizontal direction. Some embodiments include methods of forming memory arrays. The methods may include forming a memory cell stack over a first electrode material, and then patterning the first electrode material and the memory cell stack into a first set of spaced lines extending along a first horizontal direction. Spaced lines of second electrode material may be formed over the first set of spaced lines, and may extend along a second horizontal direction that is orthogonal to the first horizontal direction.
    Type: Application
    Filed: August 19, 2011
    Publication date: December 8, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Scott Sills, Gurtej S. Sandhu
  • Publication number: 20110297646
    Abstract: A method of forming a pattern on a substrate includes forming spaced features over a substrate. A polymer is adsorbed to outer lateral surfaces of the spaced features. Either material of the spaced features is removed selectively relative to the adsorbed polymer or material of the adsorbed polymer is removed selectively relative to the spaced features to form a pattern on the substrate. In one embodiment, the polymer is of known chain length and has opposing longitudinal ends. One of the longitudinal ends of the polymer adsorbs to the outer lateral surfaces whereby the adsorbed polymer projects lengthwise from the outer lateral surfaces, with said chain length defining a substantially uniform lateral thickness of the adsorbed polymer on the spaced features. Additional embodiments are contemplated.
    Type: Application
    Filed: June 3, 2010
    Publication date: December 8, 2011
    Inventors: Anton deVillers, Scott Sills
  • Patent number: 8071467
    Abstract: Some embodiments include methods of forming patterns in substrates by utilizing block copolymer assemblies as patterning materials. A block copolymer assembly may be formed over a substrate, with the assembly having first and second subunits arranged in a pattern of two or more domains. Metal may be selectively coupled to the first subunits relative to the second subunits to form a pattern of metal-containing regions and non-metal-containing regions. At least some of the block copolymer may be removed to form a patterned mask corresponding to the metal-containing regions. A pattern defined by the patterned mask may be transferred into the substrate with one or more etches. In some embodiments, the patterning may be utilized to form integrated circuitry, such as, for example, gatelines.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: December 6, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Dan Millward, Scott Sills
  • Publication number: 20110272381
    Abstract: Some embodiments include methods of forming patterns. A block copolymer film may be formed over a substrate, with the block copolymer having an intrinsic glass transition temperature (Tg,0) and a degradation temperature (Td). A temperature window may be defined to correspond to temperatures (T) within the range of Tg,0?T?Td. While the block copolymer is in the upper half of the temperature window, solvent may be dispersed into the block copolymer to a process volume fraction that induces self-assembly of the block copolymer into a pattern. A defect specification may be defined, and the process volume fraction of solvent may be at level that achieves self-assembly within the defect specification. In some embodiments, the solvent may be removed from within the block copolymer while maintaining the defect specification.
    Type: Application
    Filed: May 5, 2010
    Publication date: November 10, 2011
    Inventors: Dan Millward, Scott Sills
  • Patent number: 8043964
    Abstract: An integrated circuit and a method of formation provide a contact area formed at an angled end of at least one linearly extending conductive line. In an embodiment, conductive lines with contact landing pads are formed by patterning lines in a mask material, cutting at least one of the material lines to form an angle relative to the extending direction of the material lines, forming extensions from the angled end faces of the mask material, and patterning an underlying conductor by etching using said material lines and extension as a mask. In another embodiment, at least one conductive line is cut at an angle relative to the extending direction of the conductive line to produce an angled end face, and an electrical contact landing pad is formed in contact with the angled end face.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: October 25, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Sandhu, Scott Sills
  • Patent number: 8039399
    Abstract: Some embodiments include methods of forming patterns. A first set of features is photolithographically formed over a substrate, and then a second set of features is photolithographically formed over the substrate. At least some of the features of said second set alternate with features of the first set. Spacer material is formed over and between the features of the first and second sets. The spacer material is anisotropically etched to form spacers along the features of the first and second sets. The features of the first and second sets are then removed to leave a pattern of the spacers over the substrate.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: October 18, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Ardavan Niroomand, Gurtej S. Sandhu, Mark Kiehlbauch, Scott Sills
  • Publication number: 20110250745
    Abstract: Some embodiments include methods of forming patterns in substrates by utilizing block copolymer assemblies as patterning materials. A block copolymer assembly may be formed over a substrate, with the assembly having first and second subunits arranged in a pattern of two or more domains. Metal may be selectively coupled to the first subunits relative to the second subunits to form a pattern of metal-containing regions and non-metal-containing regions. At least some of the block copolymer may be removed to form a patterned mask corresponding to the metal-containing regions. A pattern defined by the patterned mask may be transferred into the substrate with one or more etches. In some embodiments, the patterning may be utilized to form integrated circuitry, such as, for example, gatelines.
    Type: Application
    Filed: April 7, 2010
    Publication date: October 13, 2011
    Inventors: Dan Millward, Scott Sills
  • Publication number: 20110233581
    Abstract: Solid state lighting (“SSL”) devices with cellular arrays and associated methods of manufacturing are disclosed herein. In one embodiment, a light emitting diode includes a semiconductor material having a first surface and a second surface opposite the first surface. The semiconductor material has an aperture extending into the semiconductor material from the first surface. The light emitting diode also includes an active region in direct contact with the semiconductor material, and at least a portion of the active region is in the aperture of the semiconductor material.
    Type: Application
    Filed: March 25, 2010
    Publication date: September 29, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Scott Sills, Lifang Xu, Scott Schellhammer, Thomas Gehrke, Zaiyuan Ren, Anton De Villiers
  • Patent number: 8021897
    Abstract: Some embodiments include cross-point memory structures. The structures may include a line of first electrode material extending along a first horizontal direction, a multi-sided container of access device materials over the first electrode material, a memory element material within the multi-sided container, and a line of second electrode material over the memory element material and extending along a second horizontal direction that is orthogonal to the first horizontal direction. Some embodiments include methods of forming memory arrays. The methods may include forming a memory cell stack over a first electrode material, and then patterning the first electrode material and the memory cell stack into a first set of spaced lines extending along a first horizontal direction. Spaced lines of second electrode material may be formed over the first set of spaced lines, and may extend along a second horizontal direction that is orthogonal to the first horizontal direction.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: September 20, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Scott Sills, Gurtej S. Sandhu
  • Publication number: 20110193115
    Abstract: Light emitting diodes and associated methods of manufacturing are disclosed herein. In one embodiment, a light emitting diode (LED) includes a substrate, a semiconductor material carried by the substrate, and an active region proximate to the semiconductor material. The semiconductor material has a first surface proximate to the substrate and a second surface opposite the first surface. The second surface of the semiconductor material is generally non-planar, and the active region generally conforms to the non-planar second surface of the semiconductor material.
    Type: Application
    Filed: February 10, 2010
    Publication date: August 11, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Scott Schellhammer, Scott Sills, Lifang Xu, Thomas Gehrke, Zaiyuan Ren, Anton De Villiers
  • Publication number: 20110151668
    Abstract: Embodiments of the invention comprise pitch division techniques to extend the capabilities of lithographic techniques beyond their minimum pitch. The pitch division techniques described herein employ additional processing to ensure pitch divided lines have the spatial isolation necessary to prevent shorting problems. The pitch division techniques described herein further employ processing acts to increase the structural robustness of high aspect ratio features.
    Type: Application
    Filed: December 23, 2009
    Publication date: June 23, 2011
    Inventors: Sanh D. Tang, Scott Sills, Haitao Liu
  • Publication number: 20110117733
    Abstract: Some embodiments include methods of forming patterns utilizing copolymer. A copolymer composition is formed across a substrate. The composition includes subunits A and B, and will be self-assembled to form core structures spaced center-to-center by a distance of L0. The core structures are contained within a repeating pattern of polygonal unit cells. Distances from the core structures to various locations of the unit cells are calculated to determine desired distributions of subunit lengths.
    Type: Application
    Filed: November 19, 2009
    Publication date: May 19, 2011
    Inventor: Scott Sills
  • Publication number: 20100323096
    Abstract: Some embodiments include methods of forming patterns utilizing copolymer. A main body of copolymer may be formed across a substrate, and self-assembly of the copolymer may be induced to form a pattern of structures across the substrate. A uniform thickness throughout the main body of the copolymer may be maintained during the inducement of the self-assembly. In some embodiments, the uniform thickness may be maintained through utilization of a wall surrounding the main body of copolymer to impede dispersal of the copolymer from the main body. In some embodiments, the uniform thickness may be maintained through utilization of a volume of copolymer in fluid communication with the main body of copolymer.
    Type: Application
    Filed: June 22, 2009
    Publication date: December 23, 2010
    Inventors: Scott Sills, Dan Millward
  • Publication number: 20100295183
    Abstract: An integrated circuit and a method of formation provide a contact area formed at an angled end of at least one linearly extending conductive line. In an embodiment, conductive lines with contact landing pads are formed by patterning lines in a mask material, cutting at least one of the material lines to form an angle relative to the extending direction of the material lines, forming extensions from the angled end faces of the mask material, and patterning an underlying conductor by etching using said material lines and extension as a mask. In another embodiment, at least one conductive line is cut at an angle relative to the extending direction of the conductive line to produce an angled end face, and an electrical contact landing pad is formed in contact with the angled end face.
    Type: Application
    Filed: May 20, 2009
    Publication date: November 25, 2010
    Inventors: Gurtej Sandhu, Scott Sills
  • Publication number: 20100239983
    Abstract: A method of forming a pattern on a substrate includes forming spaced first features over a substrate. The spaced first features have opposing lateral sidewalls. Material is formed onto the opposing lateral sidewalls of the spaced first features. That portion of such material which is received against each of the opposing lateral sidewalls is of different composition from composition of each of the opposing lateral sidewalls. At least one of such portion of the material and the spaced first features is densified to move the at least one laterally away from the other of the at least one to form a void space between each of the opposing lateral sidewalls and such portion of the material.
    Type: Application
    Filed: March 23, 2009
    Publication date: September 23, 2010
    Inventors: Scott Sills, Gurtej S. Sandhu
  • Publication number: 20100227281
    Abstract: Some embodiments include methods of forming patterns of openings. The methods may include forming spaced features over a substrate. The features may have tops and may have sidewalls extending downwardly from the tops. A first material may be formed along the tops and sidewalls of the features. The first material may be formed by spin-casting a conformal layer of the first material across the features, or by selective deposition along the features relative to the substrate. After the first material is formed, fill material may be provided between the features while leaving regions of the first material exposed. The exposed regions of the first material may then be selectively removed relative to both the fill material and the features to create the pattern of openings.
    Type: Application
    Filed: March 3, 2009
    Publication date: September 9, 2010
    Inventors: Scott Sills, Gurtej S. Sandhu, John Smythe, Ming Zhang