Patents by Inventor Semiconductor Energy Laboratory Co., Ltd.

Semiconductor Energy Laboratory Co., Ltd. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130140553
    Abstract: A highly reliable semiconductor device and a method for manufacturing the semiconductor device are provided. The semiconductor device is manufactured with a high yield, so that high productivity is achieved. In a semiconductor device including a transistor in which a source electrode layer and a drain electrode layer are provided over and in contact with an oxide semiconductor film, entry of impurities and formation of oxygen vacancies in an end face portion of the oxide semiconductor film are suppressed. This can prevent fluctuation in the electric characteristics of the transistor which is caused by formation of a parasitic channel in the end face portion of the oxide semiconductor film.
    Type: Application
    Filed: November 27, 2012
    Publication date: June 6, 2013
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Semiconductor Energy Laboratory Co., Ltd.
  • Publication number: 20130140569
    Abstract: A semiconductor device includes a first transistor which includes a first gate electrode below its oxide semiconductor layer and a second gate electrode above its oxide semiconductor layer, and a second transistor which includes a first gate electrode above its oxide semiconductor layer and a second gate electrode below its oxide semiconductor layer and is provided so as to at least partly overlap with the first transistor. In the semiconductor device, a conductive film serving as the second gate electrode of the first transistor and the second gate electrode of the second transistor is shared between the first transistor and the second transistor. Note that the second gate electrode not only controls the threshold voltages (Vth) of the first transistor and the second transistor but also has an effect of reducing interference of an electric field applied from respective first gate electrodes of the first transistor and the second transistor.
    Type: Application
    Filed: November 21, 2012
    Publication date: June 6, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Semiconductor Energy Laboratory Co., Ltd.
  • Publication number: 20130140558
    Abstract: Disclosed is a semiconductor device functioning as a multivalued memory device including: memory cells connected in series; a driver circuit selecting a memory cell and driving a second signal line and a word line; a driver circuit selecting any of writing potentials and outputting it to a first signal line; a reading circuit comparing a potential of a bit line and a reference potential; and a potential generating circuit generating the writing potential and the reference potential. One of the memory cells includes: a first transistor connected to the bit line and a source line; a second transistor connected to the first and second signal line; and a third transistor connected to the word line, bit line, and source line. The second transistor includes an oxide semiconductor layer. A gate electrode of the first transistor is connected to one of source and drain electrodes of the second transistor.
    Type: Application
    Filed: January 25, 2013
    Publication date: June 6, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Semiconductor Energy Laboratory Co., Ltd.
  • Publication number: 20130143345
    Abstract: In this embodiment, an interval distance between a deposition source holder 17 and an object on which deposition is performed (substrate 13) is reduced to 30 cm or less, preferably 20 cm or less, more preferably 5 to 15 cm, and a deposition source holder 17 is moved in an X direction or a Y direction in accordance with an insulator (also called a bank or a barrier) in deposition, and a shutter 15 is opened or closed to form a film. The present invention can cope with an increase in size of a deposition apparatus with a further increase in size of a substrate in the future.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 6, 2013
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Semiconductor Energy Laboratory Co., Ltd.
  • Publication number: 20130140555
    Abstract: Provided is a miniaturized transistor with stable and high electrical characteristics with high yield. In a semiconductor device including the transistor in which an oxide semiconductor film, a gate insulating film, and a gate electrode layer are stacked in this order, a first sidewall insulating layer is provided in contact with a side surface of the gate electrode layer, and a second sidewall insulating layer is provided to cover a side surface of the first sidewall insulating layer. The first sidewall insulating layer is an aluminum oxide film in which a crevice with an even shape is formed on its side surface. The second sidewall insulating layer is provided to cover the crevice. A source electrode layer and a drain electrode layer are provided in contact with the oxide semiconductor film and the second sidewall insulating layer.
    Type: Application
    Filed: November 27, 2012
    Publication date: June 6, 2013
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Semiconductor Energy Laboratory Co., Ltd.
  • Publication number: 20130140559
    Abstract: An object is to provide a semiconductor device having a structure with which parasitic capacitance between wirings can be sufficiently reduced. An oxide insulating layer serving as a channel protective layer is formed over part of an oxide semiconductor layer overlapping with a gate electrode layer. In the same step as formation of the oxide insulating layer, an oxide insulating layer covering a peripheral portion of the oxide semiconductor layer is formed. The oxide insulating layer which covers the peripheral portion of the oxide semiconductor layer is provided to increase the distance between the gate electrode layer and a wiring layer formed above or in the periphery of the gate electrode layer, whereby parasitic capacitance is reduced.
    Type: Application
    Filed: January 28, 2013
    Publication date: June 6, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: SEMICONDUCTOR ENERGY LABORATORY CO. , LTD.
  • Publication number: 20130140557
    Abstract: To provide a method by which a semiconductor device including a thin film transistor with excellent electric characteristics and high reliability is manufactured with a small number of steps. After a channel protective layer is formed over an oxide semiconductor film containing In, Ga, and Zn, a film having n-type conductivity and a conductive film are formed, and a resist mask is formed over the conductive film. The conductive film, the film having n-type conductivity, and the oxide semiconductor film containing In, Ga, and Zn are etched using the channel protective layer and gate insulating films as etching stoppers with the resist mask, so that source and drain electrode layers, a buffer layer, and a semiconductor layer are formed.
    Type: Application
    Filed: December 26, 2012
    Publication date: June 6, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Semiconductor Energy Laboratory Co., Ltd.
  • Publication number: 20130134422
    Abstract: To improve switching characteristics of a transistor in which a channel is formed in an oxide semiconductor layer. A parasitic channel is formed at an end portion of the oxide semiconductor layer because a source and a drain of the transistor are electrically connected to the end portion. That is, when at least one of the source and the drain of the transistor is not electrically connected to the end portion, the parasitic channel is not formed at the end portion. In view of this, a transistor having a structure in which at least one of a source and a drain of the transistor is not or less likely to be electrically connected to an end portion of an oxide semiconductor layer is provided.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 30, 2013
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Semiconductor Energy Laboratory Co., Ltd.
  • Publication number: 20130134051
    Abstract: To provide a flexible substrate processing apparatus which allows the stable reduction of an oxide contained in a film-like structure body formed on a flexible substrate. The apparatus has a substrate carrying-out portion where a flexible substrate on which a film-like structure body is formed is unwound; a reduction treatment portion where an oxide contained in the film-like structure body formed on the flexible substrate is electrochemically reduced; a washing portion where the flexible substrate and the film-like structure body are washed; a drying portion where the flexible substrate and the film-like structure body are dried; and a substrate carrying-in portion where the flexible substrate on which the film-like structure body is formed is taken up.
    Type: Application
    Filed: November 19, 2012
    Publication date: May 30, 2013
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Semiconductor Energy Laboratory Co., Ltd.
  • Publication number: 20130137255
    Abstract: To provide a semiconductor device including an oxide semiconductor which is capable of having stable electric characteristics and achieving high reliability, by a dehydration or dehydrogenation treatment performed on a base insulating layer provided in contact with an oxide semiconductor layer, the water and hydrogen contents of the base insulating layer can be decreased, and by an oxygen doping treatment subsequently performed, oxygen which can be eliminated together with the water and hydrogen is supplied to the base insulating layer. By formation of the oxide semiconductor layer in contact with the base insulating layer whose water and hydrogen contents are decreased and whose oxygen content is increased, oxygen can be supplied to the oxide semiconductor layer while entry of the water and hydrogen into the oxide semiconductor layer is suppressed.
    Type: Application
    Filed: November 20, 2012
    Publication date: May 30, 2013
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Semiconductor Energy Laboratory Co., Ltd.
  • Publication number: 20130134352
    Abstract: Provided is a novel liquid crystal composition that can be used for a variety of liquid crystal devices. The novel liquid crystal composition exhibits a blue phase and includes a binaphthyl compound represented by a general formula (G1) as a chiral agent. In the general formula (G1), Ar2 represents any of an aryl group having 6 to 12 carbon atoms and a cycloalkyl group having 3 to 12 carbon atoms; n is 0 to 3; and one of R and R1 represents a substituent represented by a general formula (G2) and the other represents hydrogen. In the general formula (G2), Ar1 represents any of an aryl group having 6 to 12 carbon atoms and a cycloalkyl group having 3 to 12 carbon atoms; and k is 1 to 3.
    Type: Application
    Filed: November 27, 2012
    Publication date: May 30, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Semiconductor Energy Laboratory Co., Ltd.
  • Publication number: 20130134400
    Abstract: An organic electroluminescence device of the present invention adapts a new concept in its configuration to improve its efficiency in addition to obtain a high reliability and good yielding. The organic electroluminescent device having an electroluminescent film containing an organic material capable of causing an electroluminescence and being arranged between a first electrode and a second electrode, includes: a carrier generation layer, which is a floating electrode, is embodied in the electroluminescent film; an insulting film between the first electrode and the electroluminescent film, and an insulating film between the second electrode and the electroluminescent film, wherein the organic electroluminescent device is driven by an alternating current bias.
    Type: Application
    Filed: December 22, 2012
    Publication date: May 30, 2013
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Semiconductor Energy Laboratory Co., Ltd.
  • Publication number: 20130137194
    Abstract: A method of manufacturing a light emitting device is provided in which satisfactory image display can be performed by the investigation and repair of short circuits in defect portions of light emitting elements. A backward direction electric current flows in the defect portions if a reverse bias voltage is applied to the light emitting elements having the defect portions. Emission of light which occurred from the backward direction electric current flow is measured by using an emission microscope, specifying the position of the defect portions, and short circuit locations can be repaired by irradiating a laser to the defect portions, turning them into insulators.
    Type: Application
    Filed: January 24, 2013
    Publication date: May 30, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: SEMICONDUCTOR ENERGY LABORATORY Co., Ltd.
  • Publication number: 20130135023
    Abstract: A pulse signal output circuit capable of operating stably and a shift register including the pulse signal output circuit are provided. A clock signal is supplied to one of transistors connected to a first output terminal. A power supply potential is applied to one of transistors connected to a second output terminal. Thus, power consumed by discharge and charge of the transistor included in the second output terminal can be reduced. Further, since a potential is supplied from a power source to the second output terminal, sufficient charge capability can be obtained.
    Type: Application
    Filed: January 31, 2013
    Publication date: May 30, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
  • Publication number: 20130137226
    Abstract: A highly reliable semiconductor device that includes a transistor including an oxide semiconductor is provided. In a manufacturing process of a semiconductor device that includes a bottom-gate transistor including an oxide semiconductor, an insulating film which is in contact with an oxide semiconductor film is subjected to dehydration or dehydrogenation treatment by heat treatment and oxygen doping treatment in this order. The insulating film which is in contact with the oxide semiconductor film refers to a gate insulating film provided under the oxide semiconductor film and an insulating film which is provided over the oxide semiconductor film and functions as a protective insulating film. The gate insulating film and/or the insulating film are/is subjected to dehydration or dehydrogenation treatment by heat treatment and oxygen doping treatment in this order.
    Type: Application
    Filed: November 20, 2012
    Publication date: May 30, 2013
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Semiconductor Energy Laboratory Co., Ltd.
  • Publication number: 20130133808
    Abstract: When an oxide semiconductor is deposited by a sputtering method, there is a difference in composition between a sputtering target and a film deposited using the sputtering target in some cases depending on a material of the oxide semiconductor. In manufacturing a sputtering target containing zinc oxide, a crystal which contains zinc oxide is formed in advance, the crystal is crushed, and then a predetermined amount of zinc oxide is added and mixed. After that, the resulting object is sintered to form the sputtering target. The composition of the sputtering target is adjusted by setting the proportion of zinc in the sputtering target higher than that of zinc in a film having a desired composition which is obtained at last, in consideration of the amount of zinc which is reduced at the time of deposition by a sputtering method, the amount of zinc which is reduced at the time of sintering, and the like.
    Type: Application
    Filed: November 15, 2012
    Publication date: May 30, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Semiconductor Energy Laboratory Co., Ltd.
  • Publication number: 20130134396
    Abstract: A glass pattern that can be used for a substrate provided with a material having low heat resistance and has increased productivity is provided. Further, a sealed body having high hermeticity and increased productivity is provided. Furthermore, a light-emitting device with high reliability including such a sealed body is provided. A glass sheet is used for a main portion of a glass pattern such as a straight line portion and a curved portion. In a joint portion of two glass sheets arranged in the corner portion, the straight line portion, or the like of the glass pattern, a frit paste is provided in contact with the glass sheets and is locally heated to remove the binder from the frit paste and to form a glass layer; thus, the glass sheets are fused to each other without any space provided therebetween.
    Type: Application
    Filed: November 27, 2012
    Publication date: May 30, 2013
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Semiconductor Energy Laboratory Co., Ltd.
  • Publication number: 20130134398
    Abstract: A sealed structure which has high sealing capability and whose border can be slim is provided. The sealed structure includes a pair of substrates whose respective surfaces face each other with a space therebetween, and a glass layer which is in contact with the substrates, defines a space between the substrates, and has at least one corner portion and side portions in continuity with the corner portion. The width of the corner portion of the glass layer is smaller than or equal to that of the side portion of the same. The sealed structure may comprise a highly reliable light-emitting element including a layer containing a light-emitting organic compound provided between a pair of electrodes.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 30, 2013
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Semiconductor Energy Laboratory Co., Ltd.
  • Publication number: 20130134417
    Abstract: A display device including an oxide semiconductor, a protective circuit and the like having appropriate structures and a small occupied area is necessary. The protective circuit is formed using a non-linear element which includes a gate insulating film covering a gate electrode; a first oxide semiconductor layer which is over the gate insulating layer and overlaps with the gate electrode; and a first wiring layer and a second wiring layer each of which is formed by stacking a conductive layer and a second oxide semiconductor layer and whose end portions are over the first oxide semiconductor layer and overlap with the gate electrode. The gate electrode of the non-linear element is connected to a scan line or a signal line, the first wiring layer or the second wiring layer of the non-linear element is directly connected to the gate electrode layer so as to apply potential of the gate electrode.
    Type: Application
    Filed: December 31, 2012
    Publication date: May 30, 2013
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Semiconductor Energy Laboratory Co., Ltd.
  • Publication number: 20130134408
    Abstract: It is an object of the present invention to provide a light emitting element with a low driving voltage. In a light emitting element, a first electrode; and a first composite layer, a second composite layer, a light emitting layer, an electron transporting layer, an electron injecting layer, and a second electrode, which are stacked over the first electrode, are included. The first composite layer and the second composite layer each include metal oxide and an organic compound. A concentration of metal oxide in the first composite layer is higher than a concentration of metal oxide in the second composite layer, whereby a light emitting element with a low driving voltage can be obtained. Further, the composite layer is not limited to a two-layer structure. A multi-layer structure can be employed. However, a concentration of metal oxide in the composite layer is gradually higher from the light emitting layer to first electrode side.
    Type: Application
    Filed: January 29, 2013
    Publication date: May 30, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: SEMICONDUCTOR ENERGY LABORATORY CO. LTD.