Patents by Inventor Seung Cho

Seung Cho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200323768
    Abstract: The lyophilized formulation of stem cell-derived exosomes and the anti-inflammatory composition including the same as an active ingredient is able to stabilize stem cell-derived exosomes and exhibit excellent anti-inflammatory effects, and particularly, exhibit remarkable anti-inflammatory effects as compared with not-lyophilized stem cell-derived exosomes isolated and purified from conditioned media of stem cells. Therefore, the lyophilized formulation of stem cell-derived exosomes and the anti-inflammatory composition including the same as an active ingredient is able to effectively prevent, suppress, alleviate, ameliorate or treat inflammatory response or inflammatory diseases.
    Type: Application
    Filed: June 26, 2020
    Publication date: October 15, 2020
    Applicant: ExoCoBio Inc.
    Inventors: Yong Weon Yi, Byong Seung Cho, Kwang Il Kim
  • Publication number: 20200328065
    Abstract: An apparatus for distributing plasma products includes first and second electrodes that each include planar surfaces. The first electrode forms first apertures from a first planar surface to a second planar surface; the second electrode forms second apertures from the third planar surface to the fourth planar surface. The electrodes couple through one or more adjustable couplers such that the third planar surface is disposed adjacent to the second planar surface with a gap therebetween, the gap having a gap distance. Each of the adjustable couplers has a range of adjustment. The first and second apertures are arranged such that for at least one position within the ranges of adjustment, none of the first apertures aligns with any of the second apertures to form an open straight-line path extending through both the first and second electrodes.
    Type: Application
    Filed: June 29, 2020
    Publication date: October 15, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Tien Fak Tan, Saravjeet Singh, Dmitry Lubomirsky, Tae Wan Kim, Kenneth D. Schatz, Tae Seung Cho, Lok Kee Loh
  • Publication number: 20200276233
    Abstract: A composition for strengthening skin barrier or improving skin barrier function is able to improve objective indicators related to the protection of skin barrier, the strengthening of skin barrier, and/or the improvement of skin barrier function. The composition exhibits the effects of increasing the amount of ceramides, dihydroceramides and sphingoid bases, increasing the activities of enzymes that are involved in the synthesis thereof, and decreasing the activities of enzymes that are involved in the degradation thereof. In addition, the composition is able to restore skin barrier function by reducing TSLP, IL-4, and IL-13 which are closely associated with skin barrier damage, and thus interrupting a vicious circle in which the lipids and proteins contributing to skin barrier decrease.
    Type: Application
    Filed: May 20, 2020
    Publication date: September 3, 2020
    Applicant: ExoCoBio Inc.
    Inventors: Yong Weon YI, Byong Seung CHO
  • Patent number: 10752994
    Abstract: An apparatus for depositing a coating on a substrate at atmospheric pressure comprises (a) a plasma torch comprising a microwave source coupled to an antenna disposed within a chamber having an open end, the chamber comprising a gas inlet for flow of a gas over the antenna to generate a plasma jet; (b) a substrate positioned outside the open end of the chamber a predetermined distance away from a tip of the antenna; and (c) a target material to be coated on the substrate disposed at the tip of the antenna.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: August 25, 2020
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: David N. Ruzic, Yuilun Wu, Ivan Shchelkanov, Jungmi Hong, Zihao Ouyang, Tae Seung Cho
  • Publication number: 20200222298
    Abstract: A composition containing a combination of exosomes and sapogenin as an active ingredient is disclosed. The composition is able to promote preadipocyte proliferation, lipid uptake into adipocytes, and/or adipogenesis, but reduce the cytotoxicity caused by sapogenin. Therefore, the composition can reduce side effects on the body or skin, and can be used such that it is conveniently applied to a dissatisfactory part of the body showing flaws which look less plump due to a deficit in lipids and the like, or an area of the skin showing flaws caused by a deficit in lipids.
    Type: Application
    Filed: March 19, 2020
    Publication date: July 16, 2020
    Applicant: ExoCoBio Inc.
    Inventors: Yong Weon YI, Byong Seung CHO
  • Patent number: 10699879
    Abstract: An apparatus for distributing plasma products includes first and second electrodes that each include planar surfaces. The first electrode forms first apertures from a first planar surface to a second planar surface; the second electrode forms second apertures from the third planar surface to the fourth planar surface. The electrodes couple through one or more adjustable couplers such that the third planar surface is disposed adjacent to the second planar surface with a gap therebetween, the gap having a gap distance. Each of the adjustable couplers has a range of adjustment. The first and second apertures are arranged such that for at least one position within the ranges of adjustment, none of the first apertures aligns with any of the second apertures to form an open straight-line path extending through both the first and second electrodes, and the gap distance is between 0.005 inch and 0.050 inch.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: June 30, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Tien Fak Tan, Saravjeet Singh, Dmitry Lubomirsky, Tae Wan Kim, Kenneth D. Schatz, Tae Seung Cho, Lok Kee Loh
  • Patent number: 10700311
    Abstract: An embodiment relates to a display device and a manufacturing method of the display device. The display device includes a flexible substrate including a display region and a non-display region outside the display region, and a flexible substrate disposed on the flexible substrate of the display region, wherein a groove is provided on a back surface of the flexible substrate.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: June 30, 2020
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Seung Wook Kwon, Young Seung Cho
  • Publication number: 20200121722
    Abstract: The present invention provides a composition for preventing, suppressing, alleviating, ameliorating or treating pruritus comprising stem cell-derived exosomes as an active ingredient. The composition of the present invention is able to act against pruritus-inducing multiple cytokine targets, for example, IL-4, IL-31 and TSLP, and thus is able to be widely applied against pruritus caused by various factors and is able to effectively suppress and alleviate pruritus. In addition, when the composition of the present invention is applied directly to human skin, it is able to remarkably ameliorate pruritus-associated clinical scores, erythema and the like. Thus, the composition of the present invention is able to be used as a pharmaceutical composition, a skin external preparation and a cosmetic composition for preventing, suppressing, alleviating, ameliorating or treating pruritus.
    Type: Application
    Filed: December 26, 2019
    Publication date: April 23, 2020
    Applicant: ExoCoBio Inc.
    Inventors: Yong Weon Yl, Byong Seung CHO
  • Publication number: 20200121723
    Abstract: The present invention provides a composition for preventing, ameliorating, alleviating or treating dermatitis comprising exosomes derived from adipose-derived stem cells as an active ingredient. The composition of the present invention is able to act against dermatitis-inducing multiple cytokine targets, and thus be widely applied against dermatitis caused by various factors and effectively suppress and alleviate dermatitis.
    Type: Application
    Filed: December 26, 2019
    Publication date: April 23, 2020
    Applicant: ExoCoBio Inc.
    Inventors: Yong Weon YI, Byong Seung CHO
  • Patent number: 10593560
    Abstract: Exemplary magnetic induction plasma systems for generating plasma products are provided. The magnetic induction plasma system may include a first plasma source including a plurality of first sections and a plurality of second sections arranged in an alternating manner and fluidly coupled with each other such that at least a portion of plasma products generated inside the first plasma source may circulate through at least one of the plurality of first sections and at least one of the plurality of second sections inside the first plasma source. Each of the plurality of second sections may include a dielectric material. The system may further include a plurality of first magnetic elements each of which may define a closed loop. Each of the plurality of second sections may define a plurality of recesses for receiving one of the plurality of first magnetic elements therein.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: March 17, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Tae Seung Cho, Soonwook Jung, Junghoon Kim, Satoru Kobayashi, Kenneth D. Schatz, Soonam Park, Dmitry Lubomirsky
  • Patent number: 10468285
    Abstract: A wafer chuck assembly includes a puck, a shaft and a base. An insulating material defines a top surface of the puck, a heater element is embedded within the insulating material, and a conductive plate lies beneath the insulating material. The shaft includes a housing coupled with the plate, and electrical connectors for the heater elements and the electrodes. A conductive base housing couples with the shaft housing, and the connectors pass through a terminal block within the base housing. A method of plasma processing includes loading a workpiece onto a chuck having an insulating top surface, providing a DC voltage differential across two electrodes within the top surface, heating the chuck by passing current through heater elements, providing process gases in a chamber surrounding the chuck, and providing an RF voltage between a conductive plate beneath the chuck, and one or more walls of the chamber.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: November 5, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Toan Q. Tran, Sultan Malik, Dmitry Lubomirsky, Shambhu N. Roy, Satoru Kobayashi, Tae Seung Cho, Soonam Park, Shankar Venkataraman
  • Publication number: 20190318911
    Abstract: An apparatus for distributing plasma products includes first and second electrodes that each include planar surfaces. The first electrode forms first apertures from a first planar surface to a second planar surface; the second electrode forms second apertures from the third planar surface to the fourth planar surface. The electrodes couple through one or more adjustable couplers such that the third planar surface is disposed adjacent to the second planar surface with a gap therebetween, the gap having a gap distance. Each of the adjustable couplers has a range of adjustment. The first and second apertures are arranged such that for at least one position within the ranges of adjustment, none of the first apertures aligns with any of the second apertures to form an open straight-line path extending through both the first and second electrodes, and the gap distance is between 0.005 inch and 0.050 inch.
    Type: Application
    Filed: April 17, 2018
    Publication date: October 17, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Tien Fak Tan, Saravjeet Singh, Dmitry Lubomirsky, Tae Wan Kim, Kenneth D. Schatz, Tae Seung Cho, Lok Kee Loh
  • Publication number: 20190280248
    Abstract: An embodiment relates to a display device and a manufacturing method of the display device. The display device includes a flexible substrate including a display region and a non-display region outside the display region, and a flexible substrate disposed on the flexible substrate of the display region, wherein a groove is provided on a back surface of the flexible substrate.
    Type: Application
    Filed: November 15, 2018
    Publication date: September 12, 2019
    Inventors: Seung Wook KWON, Young Seung CHO
  • Publication number: 20190272999
    Abstract: Exemplary magnetic induction plasma systems for generating plasma products are provided. The magnetic induction plasma system may include a first plasma source including a plurality of first sections and a plurality of second sections arranged in an alternating manner and fluidly coupled with each other such that at least a portion of plasma products generated inside the first plasma source may circulate through at least one of the plurality of first sections and at least one of the plurality of second sections inside the first plasma source. Each of the plurality of second sections may include a dielectric material. The system may further include a plurality of first magnetic elements each of which may define a closed loop. Each of the plurality of second sections may define a plurality of recesses for receiving one of the plurality of first magnetic elements therein.
    Type: Application
    Filed: March 1, 2018
    Publication date: September 5, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Tae Seung Cho, Soonwook Jung, Junghoon Kim, Satoru Kobayashi, Kenneth D. Schatz, Soonam Park, Dmitry Lubomirsky
  • Publication number: 20190259580
    Abstract: Methods and systems for etching substrates using a remote plasma are described. Remotely excited etchants are formed in a remote plasma and flowed through a showerhead into a substrate processing region to etch the substrate. Optical emission spectra are acquired from the substrate processing region just above the substrate. The optical emission spectra may be used to determine an endpoint of the etch, determine the etch rate or otherwise characterize the etch process. A weak plasma may be present in the substrate processing region. The weak plasma may have much lower intensity than the remote plasma. In cases where no bias plasma is used above the substrate in an etch process, a weak plasma may be ignited near a viewport disposed near the side of the substrate processing region to characterize the etchants.
    Type: Application
    Filed: May 1, 2019
    Publication date: August 22, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Tae Seung Cho, Soonam Park, Junghoon Kim, Dmitry Lubomirsky, Shankar Venkataraman
  • Patent number: 10319649
    Abstract: Methods and systems for etching substrates using a remote plasma are described. Remotely excited etchants are formed in a remote plasma and flowed through a showerhead into a substrate processing region to etch the substrate. Optical emission spectra are acquired from the substrate processing region just above the substrate. The optical emission spectra may be used to determine an endpoint of the etch, determine the etch rate or otherwise characterize the etch process. A weak plasma may be present in the substrate processing region. The weak plasma may have much lower intensity than the remote plasma. In cases where no bias plasma is used above the substrate in an etch process, a weak plasma may be ignited near a viewport disposed near the side of the substrate processing region to characterize the etchants.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: June 11, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Tae Seung Cho, Soonam Park, Junghoon Kim, Dmitry Lubomirsky, Shankar Venkataraman
  • Publication number: 20190093229
    Abstract: An apparatus for depositing a coating on a substrate at atmospheric pressure comprises (a) a plasma torch comprising a microwave source coupled to an antenna disposed within a chamber having an open end, the chamber comprising a gas inlet for flow of a gas over the antenna to generate a plasma jet; (b) a substrate positioned outside the open end of the chamber a predetermined distance away from a tip of the antenna; and (c) a target material to be coated on the substrate disposed at the tip of the antenna.
    Type: Application
    Filed: November 21, 2018
    Publication date: March 28, 2019
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: David N. Ruzic, Yuilun Wu, Ivan Shchelkanov, Jungmi Hong, Zihao Ouyang, Tae Seung Cho
  • Patent number: 10167556
    Abstract: An apparatus for depositing a coating on a substrate at atmospheric pressure comprises (a) a plasma torch comprising a microwave source coupled to an antenna disposed within a chamber having an open end, the chamber comprising a gas inlet for flow of a gas over the antenna to generate a plasma jet; (b) a substrate positioned outside the open end of the chamber a predetermined distance away from a tip of the antenna; and (c) a target material to be coated on the substrate disposed at the tip of the antenna.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: January 1, 2019
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: David N. Ruzic, Yuilun Wu, Ivan Shchelkanov, Jungmi Hong, Zihao Ouyang, Tae Seung Cho
  • Publication number: 20180376202
    Abstract: The present invention relates to an apparatus and a method of providing contents, and more particularly, to an apparatus and a method of providing contents, which generate a channel map based on information about preferred contents received from a user and provide the user with various contents by using the generated channel map, thereby providing various kinds of dispersed contents according to preference of the user.
    Type: Application
    Filed: September 7, 2017
    Publication date: December 27, 2018
    Applicant: Carbosys Co., Ltd.
    Inventor: Seung CHO
  • Publication number: 20180366378
    Abstract: Methods of monitoring a plasma while processing a semiconductor substrate are described. In embodiments, the methods include determining the difference in power between the power delivered from the plasma power supply and the power received by the plasma in a substrate processing chamber. The power received may be determined using a V/I sensor positioned after the matching circuit. The power reflected or the power lost is the difference between the delivered power and the received power. The process may be terminated by removing the delivered power if the reflected power is above a setpoint. The VRF may further be fourier transformed into frequency space and compared to the stored fourier transform of a healthy plasma process. Missing frequencies from the VRF fourier transform may independently or further indicate an out-of-tune plasma process and the process may be terminated.
    Type: Application
    Filed: June 16, 2017
    Publication date: December 20, 2018
    Applicant: Applied Materials, Inc.
    Inventors: Junghoon Kim, Soonam Park, Tae Seung Cho, Dmitry Lubomirsky, Nikolai Kalnin