Patents by Inventor Sey-Ping Sun

Sey-Ping Sun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140363943
    Abstract: The invention relates to a contact structure of a semiconductor device. An exemplary structure for a contact structure for a semiconductor device comprises a substrate comprising a major surface and a trench below the major surface; a strained material filling the trench, wherein a lattice constant of the strained material is different from a lattice constant of the substrate; an inter-layer dielectric (ILD) layer having an opening over the strained material, wherein the opening comprises dielectric sidewalls and a strained material bottom; a semiconductor layer on the sidewalls and bottom of the opening; a dielectric layer on the semiconductor layer; and a metal layer filling an opening of the dielectric layer.
    Type: Application
    Filed: August 26, 2014
    Publication date: December 11, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Sung-Li Wang, Ding-Kang Shih, Chin-Hsiang Lin, Sey-Ping Sun, Clement Hsingjen Wann
  • Patent number: 8853052
    Abstract: A method for fabricating a semiconductor device is disclosed. An exemplary method includes a providing substrate. A dielectric layer is formed over the semiconductor substrate and a stop layer is formed over the dielectric layer. The stop layer and the dielectric layer comprise a different material. The method further includes forming a patterned hard mask layer over the stop layer and etching the semiconductor substrate through the patterned hard mask layer to form a plurality of trenches. The method also includes depositing an isolation material on the semiconductor substrate and substantially filling the plurality of trenches. Thereafter, performing a CMP process on the semiconductor substrate, wherein the CMP process stops on the stop layer.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: October 7, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Gin-Chen Huang, Yi-An Lin, Ching-Hong Jiang, Neng-Kuo Chen, Sey-Ping Sun, Clement Hsingjen Wann
  • Publication number: 20140256124
    Abstract: A method of producing a metal gate structure. The method includes forming a gate structure above a semiconductor substrate and performing one or more chemical metal planarization (CMP) processes to planarize the formed gate structure using a CMP tool. An in situ gate etching process is performed in a CMP cleaner of the CMP tool to form a gate recess. A contact etch stop layer (CESL) can then be deposited in the formed gate recess and one or more CMP processes performed to planarize the CESL.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Jung Hsu, Gin-Chen Huang, Yi-An Lin, Neng-Kuo Chen, Sey-Ping Sun, Clement Hsingjen Wann
  • Patent number: 8823065
    Abstract: The invention relates to a contact structure of a semiconductor device. An exemplary structure for a contact structure for a semiconductor device comprises a substrate comprising a major surface and a trench below the major surface; a strained material filling the trench, wherein a lattice constant of the strained material is different from a lattice constant of the substrate; an inter-layer dielectric (ILD) layer having an opening over the strained material, wherein the opening comprises dielectric sidewalls and a strained material bottom; a semiconductor layer on the sidewalls and bottom of the opening; a dielectric layer on the semiconductor layer; and a metal layer filling an opening of the dielectric layer.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: September 2, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sung-Li Wang, Ding-Kang Shih, Chin-Hsiang Lin, Sey-Ping Sun, Clement Hsingjen Wann
  • Publication number: 20140213048
    Abstract: A FinFET device is fabricated by first receiving a FinFET precursor. The FinFET precursor includes a substrate, fins on the substrate, isolation regions on sides of the fins and dummy gate stacks on the substrate including wrapping a portion of the fin, which is referred to as a gate channel region. The dummy gate stacks is removed to form a gate trench and a gate dielectric layer is deposited in the gate trench. A metal stressor layer (MSL) is conformably deposited on the gate dielectric layer. A capping layer is deposited on the MSL. A thermal treatment is applied to the MSL to achieve a volume expansion. Then the capping layer is removed and a metal gate (MG) is formed on the MSL.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sey-Ping Sun, Sung-Li Wang, Chin-Hsiang Lin, Neng-Kuo Chen, Clement Hsingjen Wann
  • Publication number: 20140197499
    Abstract: The present disclosure relates to methods of forming a self-aligned contact and related apparatus. In some embodiments, the method forms a plurality of gate lines interspersed between a plurality of dielectric lines, wherein the gate lines and the dielectric lines extend in a first direction over an active area. One or more of the plurality of gate lines are into a plurality of gate line sections aligned in the first direction. One or more of the plurality of dielectric lines are cut into a plurality of dielectric lines sections aligned in the first direction. A dummy isolation material is deposited between adjacent dielectric sections in the first direction and between adjacent gate line sections in the first direction. One or more self-aligned metal contacts are then formed by replacing a part of one or more of the plurality of dielectric lines over the active area with a contact metal.
    Type: Application
    Filed: January 17, 2013
    Publication date: July 17, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Neng-Kuo Chen, Shao-Ming Yu, Gin-Chen Huang, Chia-Jung Hsu, Sey-Ping Sun, Clement Hsingjen Wann
  • Publication number: 20140191333
    Abstract: This description relates to a method including forming an interlayer dielectric (ILD) layer and a dummy gate structure over a substrate and forming a cavity in a top portion of the ILD layer. The method further includes forming a protective layer to fill the cavity. The method further includes planarizing the protective layer. A top surface of the planarized protective layer is level with a top surface of the dummy gate structure. This description also relates to a semiconductor device including first and second gate structures and an ILD layer formed on a substrate. The semiconductor device further includes a protective layer formed on the ILD layer, the protective layer having a different etch selectivity than the ILD layer, where a top surface of the protective layer is level with the top surfaces of the first and second gate structures.
    Type: Application
    Filed: January 7, 2013
    Publication date: July 10, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Wei CHANG, Yi-An LIN, Neng-Kuo CHEN, Sey-Ping SUN, Clement Hsingjen WANN, Yu-Lien HUANG
  • Publication number: 20140162446
    Abstract: A method includes forming a first gate above a semiconductor substrate, forming a hard mask on the first gate, and forming a contact etch stop layer (CESL) on the hard mask. No hard mask is removed between the step of forming the hard mask and the step of forming the CESL. The method further includes forming an interlayer dielectric (ILD) layer over the CESL, and performing one or more CMP processes to planarize the ILD layer, remove the CESL on the hard mask, and remove at least one portion of the hard mask.
    Type: Application
    Filed: December 7, 2012
    Publication date: June 12, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-An LIN, Chun-Wei CHANG, Neng-Kuo CHEN, Sey-Ping SUN, Clement Hsingjen WANN
  • Publication number: 20140042491
    Abstract: This description relates to a gate electrode of a field effect transistor. An exemplary structure for a field effect transistor includes a substrate; a gate electrode over the substrate including a first top surface and a sidewall; a source/drain (S/D) region at least partially disposed in the substrate on one side of the gate electrode; a spacer on the sidewall distributed between the gate electrode and the S/D region; and a contact etch stop layer (CESL) adjacent to the spacer and further comprising a portion extending over the S/D region, wherein the portion has a second top surface substantially coplanar with the first top surface.
    Type: Application
    Filed: August 10, 2012
    Publication date: February 13, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Neng-Kuo CHEN, Clement Hsingjen WANN, Yi-An LIN, Chun-Wei CHANG, Sey-Ping SUN
  • Publication number: 20130277769
    Abstract: Non-planar transistors and methods of fabrication thereof are described. In an embodiment, a method of forming a non-planar transistor includes forming a channel region on a first portion of a semiconductor fin, the semiconductor fin having a top surface and sidewalls. A gate electrode is formed over the channel region of the semiconductor fin, and an in-situ doped semiconductor layer is grown on the top surface and the sidewalls of the semiconductor fin on opposing sides of the gate electrode using a selective epitaxial growth process. At least a part of the doped semiconductor layer is converted to form a dopant rich region.
    Type: Application
    Filed: June 14, 2013
    Publication date: October 24, 2013
    Inventors: Chih-Hang Tung, Chin-Hsiang Lin, Cheng-Hung Chang, Sey-Ping Sun
  • Publication number: 20130270680
    Abstract: A method for forming different active thicknesses on the same silicon layer includes masking the silicon layer and exposing selected regions of the silicon layer. The thickness of the silicon layer at the exposed regions is changed, either by adding silicon or subtracting silicon from the layer at the exposed regions. Once the mask is removed, the silicon layer has regions of different active thicknesses, respectively suitable for use in different types of devices, such as diodes and transistors.
    Type: Application
    Filed: June 7, 2013
    Publication date: October 17, 2013
    Inventors: David E. Brown, Hans Van Meer, Sey-Ping Sun
  • Patent number: 8507996
    Abstract: An integrated circuit structure includes a semiconductor substrate; a gate stack overlying the semiconductor substrate; a gate spacer on a sidewall of the gate stack; a first contact plug having an inner edge contacting a sidewall of the gate spacer, and a top surface level with a top surface of the gate stack; and a second contact plug over and contacting the first contact plug. The second contact plug has a cross-sectional area smaller than a cross-sectional area of the first contact plug.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: August 13, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sey-Ping Sun, Chih-Hao Chang, Chao-An Jong, Tsung-Lin Lee, Chung-Ju Lee, Chin-Hsiang Lin
  • Patent number: 8497556
    Abstract: A semiconductor product has different active thicknesses of silicon on a single semiconductor substrate. The thickness of the silicon layer is changed either by selectively adding silicon or subtracting silicon from an original layer of silicon. The different active thicknesses are suitable for use in different types of devices, such as diodes and transistors.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: July 30, 2013
    Assignee: Advanced Micro Devices, Inc.
    Inventors: David E. Brown, Hans Van Meer, Sey-Ping Sun
  • Publication number: 20130043512
    Abstract: Semiconductor device manufacturing methods and methods of forming insulating material layers are disclosed. In one embodiment, a method of forming a composite insulating material layer of a semiconductor device includes providing a workpiece and forming a first sub-layer of the insulating material layer over the workpiece using a first plasma power level. A second sub-layer of the insulating material layer is formed over the first sub-layer of the insulating material layer using a second plasma power level, and the workpiece is annealed.
    Type: Application
    Filed: August 18, 2011
    Publication date: February 21, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Gin-Chen Huang, Tsai-Fu Hsiao, Ching-Hong Jiang, Neng-Kuo Chen, Hongfa Luan, Sey-Ping Sun, Clement Hsingjen Wann
  • Publication number: 20130034948
    Abstract: A method for fabricating a semiconductor device is disclosed. An exemplary method includes a providing substrate. A dielectric layer is formed over the semiconductor substrate and a stop layer is formed over the dielectric layer. The stop layer and the dielectric layer comprise a different material. The method further includes forming a patterned hard mask layer over the stop layer and etching the semiconductor substrate through the patterned hard mask layer to form a plurality of trenches. The method also includes depositing an isolation material on the semiconductor substrate and substantially filling the plurality of trenches. Thereafter, performing a CMP process on the semiconductor substrate, wherein the CMP process stops on the stop layer.
    Type: Application
    Filed: August 5, 2011
    Publication date: February 7, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Gin-Chen Huang, Yi-An Lin, Ching-Hong Jiang, Neng-Kuo Chen, Sey-Ping Sun, Clement Hsingjen Wann
  • Publication number: 20120326279
    Abstract: A semiconductor product has different active thicknesses of silicon on a single semiconductor substrate. The thickness of the silicon layer is changed either by selectively adding silicon or subtracting silicon from an original layer of silicon. The different active thicknesses are suitable for use in different types of devices, such as diodes and transistors.
    Type: Application
    Filed: September 7, 2012
    Publication date: December 27, 2012
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: David E. Brown, Hans Van Meer, Sey-Ping Sun
  • Patent number: 8263453
    Abstract: A method far farming different active thicknesses on the same silicon layer includes masking the silicon layer and exposing selected regions of the silicon layer. The thickness of the silicon layer at the exposed regions is changed, either by adding silicon or subtracting silicon from the layer at the exposed regions. Once the mask is removed, the silicon layer has regions of different active thicknesses, respectively suitable for use in different types of devices, such as diodes and transistors.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: September 11, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: David E. Brown, Hans Van Meer, Sey-Ping Sun
  • Patent number: 8124473
    Abstract: A strain enhanced semiconductor device and methods for its fabrication are provided. One method comprises embedding a strain inducing semiconductor material in the source and drain regions of the device to induce a strain in the device channel. Thin metal silicide contacts are formed to the source and drain regions so as not to relieve the induced strain. A layer of conductive material is selectively deposited in contact with the thin metal silicide contacts, and metallized contacts are formed to the conductive material.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: February 28, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: James N. Pan, Sey-Ping Sun, Andrew M. Waite
  • Publication number: 20120009690
    Abstract: The present disclosure provides a system for in-situ spectrometry. The system includes a wafer-cleaning machine that cleans a surface of a semiconductor wafer using a cleaning solution. The system also includes a spectrometry machine that is coupled to the wafer-cleaning machine. The spectrometry machine receives a portion of the cleaning solution from the wafer-cleaning machine. The portion of the cleaning solution collects particles from the wafer during the cleaning. The spectrometry machine is operable to analyze a particle composition of a portion of the wafer based on the portion of the cleaning solution, while the wafer remains in the wafer-cleaning machine during the particle composition analysis.
    Type: Application
    Filed: July 12, 2010
    Publication date: January 12, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Clement Hsingjen Wann, Hung-Ming Chen, Chang-Yun Chang, Sey-Ping Sun
  • Publication number: 20110272791
    Abstract: A method far farming different active thicknesses on the same silicon layer includes masking the silicon layer and exposing selected regions of the silicon layer. The thickness of the silicon layer at the exposed regions is changed, either by adding silicon or subtracting silicon from the layer at the exposed regions. Once the mask is removed, the silicon layer has regions of different active thicknesses, respectively suitable for use in different types of devices, such as diodes and transistors.
    Type: Application
    Filed: July 15, 2011
    Publication date: November 10, 2011
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: David E. Brown, Hans Van Meer, Sey-Ping Sun