Patents by Inventor Shahaji B. More

Shahaji B. More has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240030136
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate having a first side and a second side opposing the first side, a source/drain epitaxial feature disposed adjacent the first side of the substrate, wherein the source/drain epitaxial feature comprises a first epitaxial layer, a second epitaxial layer in contact with the first epitaxial layer, and a third epitaxial layer having sidewalls surrounded by and in contact with the second epitaxial layer. The device structure also includes a first silicide layer in contact with the substrate, the first, second, and third epitaxial layers, a first source/drain contact extending through the substrate from the first side to the second side, and a first metal capping layer disposed between the first silicide layer and the first source/drain contact.
    Type: Application
    Filed: July 21, 2022
    Publication date: January 25, 2024
    Inventors: Cheng-Wei CHANG, Shahaji B. MORE, Yi-Ying LIU, Yueh-Ching PAI
  • Publication number: 20240030318
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The structure includes a first plurality of vertically aligned semiconductor layers disposed over a substrate and a first gate electrode layer surrounding each of the first plurality of vertically aligned semiconductor layers. The first gate electrode layer includes first one or more work function metal layers disposed between adjacent semiconductor layers of the first plurality of vertically aligned semiconductor layers and two first conductive layers disposed on opposite sides of the first one or more work function metal layers. The first conductive layers include a material different from the first one or more work function metal layers. The first gate electrode layer further includes a second conductive layer disposed on the first conductive layers, and the second conductive layer and the first conductive layers include a same material.
    Type: Application
    Filed: July 21, 2022
    Publication date: January 25, 2024
    Inventors: Cheng-Wei CHANG, Shahaji B. MORE, Chi-Yu CHOU, Yueh-Ching PAI
  • Publication number: 20240021617
    Abstract: In an embodiment, a device includes: a first fin extending from a substrate; a second fin extending from the substrate; a gate spacer over the first fin and the second fin; a gate dielectric having a first portion, a second portion, and a third portion, the first portion extending along a first sidewall of the first fin, the second portion extending along a second sidewall of the second fin, the third portion extending along a third sidewall of the gate spacer, the third portion and the first portion forming a first acute angle, the third portion and the second portion forming a second acute angle; and a gate electrode on the gate dielectric.
    Type: Application
    Filed: July 31, 2023
    Publication date: January 18, 2024
    Inventors: Shahaji B. More, Chandrashekhar Prakash Savant
  • Publication number: 20240021687
    Abstract: A source/drain component is disposed over an active region and surrounded by a dielectric material. A source/drain contact is disposed over the source/drain component. The source/drain contact includes a conductive capping layer and a conductive material having a different material composition than the conductive capping layer. The conductive material has a recessed bottom surface that is in direct contact with the conductive capping layer. A source/drain via is disposed over the source/drain contact. The source/drain via and the conductive material have different material compositions. The conductive capping layer contains tungsten, the conductive material contains molybdenum, and the source/drain via contains tungsten.
    Type: Application
    Filed: March 28, 2023
    Publication date: January 18, 2024
    Inventors: Cheng-Wei Chang, Chien Chang, Kan-Ju Lin, Harry Chien, Shuen-Shin Liang, Chia-Hung Chu, Sung-Li Wang, Shahaji B. More, Yueh-Ching Pai
  • Publication number: 20240021686
    Abstract: Semiconductor structures and methods of forming the same are provided. In an embodiment, an exemplary method includes receiving a workpiece comprising a channel region over a substrate, a source/drain feature adjacent the channel region, a gate structure over the channel region, and a dielectric structure over the source/drain feature. The method also includes forming a contact opening penetrating through the dielectric structure to expose the source/drain feature, forming a silicide layer in the contact opening and on the source/drain feature, forming a tungsten-containing layer in the contact opening and on the silicide layer, and forming a conductive layer in the contact opening and on the tungsten-containing layer, where a composition of the conductive layer is different from a composition of the tungsten-containing layer.
    Type: Application
    Filed: March 10, 2023
    Publication date: January 18, 2024
    Inventors: Shahaji B. More, Cheng-Wei Chang
  • Patent number: 11862638
    Abstract: In an embodiment, a device includes: a first fin extending from a substrate; a second fin extending from the substrate; a gate spacer over the first fin and the second fin; a gate dielectric having a first portion, a second portion, and a third portion, the first portion extending along a first sidewall of the first fin, the second portion extending along a second sidewall of the second fin, the third portion extending along a third sidewall of the gate spacer, the third portion and the first portion forming a first acute angle, the third portion and the second portion forming a second acute angle; and a gate electrode on the gate dielectric.
    Type: Grant
    Filed: March 24, 2021
    Date of Patent: January 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shahaji B. More, Chandrashekhar Prakash Savant
  • Patent number: 11855176
    Abstract: Semiconductor structures are provided. The semiconductor structure includes a fin structure protruding from a substrate and a doped region formed in the fin structure. The semiconductor structure further includes a metal gate structure formed across the fin structure and a gate spacer formed on a sidewall of the metal gate structure. The semiconductor structure further includes a source/drain structure formed over the doped region. In addition, the doped region continuously surrounds the source/drain structure and is in direct contact with the gate spacer.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shahaji B. More, Chun-Hsiung Tsai, Cheng-Yi Peng, Shih-Chieh Chang, Kuo-Feng Yu
  • Patent number: 11854904
    Abstract: A method includes etching a first and a second semiconductor fin to form a first and a second recesses, epitaxially growing an n-type source/drain region comprising a first portion and a second portion from the first and the second recesses, and a first middle portion in between and having a concave top surface. A first contact opening is formed extending into the n-type source/drain region and having a first V-shaped bottom. The method further includes etching a third and a fourth semiconductor fin to form a third and a fourth recesses, and forming a p-type source/drain region including a third portion and a third portion grown from the third and the fourth recesses, and a second middle portion in between and having a convex top surface. A second contact opening is formed and has a second V-shaped bottom, with a tip of the second V-shaped bottom being downwardly pointing.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventor: Shahaji B. More
  • Patent number: 11855208
    Abstract: A method for forming a FinFET device structure is provided. The method includes forming a fin structure extended above a substrate and forming a gate structure formed over a portion of the fin structure. The method also includes forming a source/drain (S/D) structure over the fin structure, and the S/D structure is adjacent to the gate structure. The method further includes doping an outer portion of the S/D structure to form a doped region, and the doped region includes gallium (Ga). The method includes forming a metal silicide layer over the doped region; and forming an S/D contact structure over the metal silicide layer.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Hsiung Tsai, Shahaji B. More, Cheng-Yi Peng, Yu-Ming Lin, Kuo-Feng Yu, Ziwei Fang
  • Patent number: 11855211
    Abstract: In a method of manufacturing a semiconductor device, an upper fin structure in which first semiconductor layers and second semiconductor layers are alternately stacked is formed over a lower fin structure, a sacrificial gate structure is formed over the upper fin structure, a source/drain region of the upper fin structure, which is not covered by the sacrificial gate structure, is etched thereby forming a source/drain space, the first semiconductor layers are laterally etched through the source/drain space, an inner spacer made of a dielectric material is formed on an end of each of the etched first semiconductor layers, and a source/drain epitaxial layer is formed in the source/drain space to cover the inner spacer. In etching the source/drain region, a part of the lower fin structure is also etched to form a recess, in which a (111) surface is exposed.
    Type: Grant
    Filed: April 25, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shahaji B. More, Chun Hsiung Tsai
  • Patent number: 11854831
    Abstract: The present disclosure describes a method of forming an epitaxial layer on a substrate in a chamber. The method includes cleaning the chamber with a first etching gas and depositing the epitaxial layer on the substrate. Deposition of the epitaxial layer includes epitaxially growing a first portion of the epitaxial layer with a precursor, cleaning the substrate and the chamber with a flush of a second etching gas different from the first etching gas, and epitaxially growing a second portion of the epitaxial layer with the precursor. The first portion and the second portion have the same composition. The method furthers includes etching a portion of the epitaxial layer with a third etching gas having a flow rate higher than that of the second etching gas.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Shahaji B. More
  • Publication number: 20230411456
    Abstract: Some implementations described herein include a semiconductor device including a gate-all-around transistor. The gate-all-around transistor includes a source/drain region having a core epitaxial layer and a capping epitaxial layer. The core epitaxial layer is formed within the source/drain region using a deposition recipe having a temperature that is lesser relative to temperatures of other deposition recipes used to form other epitaxial layers, including the capping layer, within the source/drain region. The deposition recipe further includes a pressure that is greater relative to pressures of the other deposition recipes used to form the other epitaxial layers within the source/drain region. The temperature and pressure of the deposition recipe used to form the core epitaxial layer promote a uniform growth of the core epitaxial layer within the source/drain region. In this way, a likelihood of voids and/or defects is reduced to increase a yield of a semiconductor device including the core epitaxial layer.
    Type: Application
    Filed: June 16, 2022
    Publication date: December 21, 2023
    Inventor: Shahaji B. MORE
  • Publication number: 20230411453
    Abstract: Some implementations described herein provide a semiconductor device having an oxide-filled barrier structure between structures of gate-all-around transistors included in the semiconductor device. The use of the oxide-filled barrier structure may reduce a distance separating nanosheet structures of a p-type metal-oxide semiconductor fin structure and an n-type metal-oxide semiconductor fin structure, broaden an availability of work-function metals for gate structures formed around nanochannels of the p-type metal-oxide semiconductor fin structure and n-type metal-oxide semiconductor structure, and improve a performance of the gate-all-around transistors by reducing miller capacitances of the gate-all-around transistors. Furthermore, the oxide-filled barrier structure may enable the combining of the p-type metal-oxide semiconductor fin structure and the n-type metal-oxide semiconductor fin structure to form a type of integrated circuitry, such as an inverter.
    Type: Application
    Filed: May 27, 2022
    Publication date: December 21, 2023
    Inventors: Cheng-Wei CHANG, Shahaji B. MORE, Chi-Yu CHOU, Yueh-Ching PAI
  • Publication number: 20230402508
    Abstract: A semiconductor device and a method of fabricating the semiconductor device are disclosed. The semiconductor device includes a substrate, a fin base disposed on the substrate, a stack of nanostructured channel regions disposed on a first portion of the fin base, a gate structure surrounding the nanostructured channel regions, a source/drain (S/D) region disposed on a second portion of the fin base, an air spacer disposed between the S/D region and the fin base, and a dielectric layer disposed between the air spacer and the fin base.
    Type: Application
    Filed: March 29, 2023
    Publication date: December 14, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Wei CHANG, Shahaji B. MORE, Lun-Kuang TAN, Chi-Yu CHOU, Yueh-Ching PAI
  • Publication number: 20230395721
    Abstract: A semiconductor structure according to the present disclosure includes a first p-type epitaxial feature disposed over a first fin, a second p-type epitaxial feature disposed and spanning over a second fin and a third fin, an interlayer dielectric (ILD) layer over the first p-type epitaxial feature and the second p-type epitaxial feature, a first contact extending through the ILD layer to electrically couple to the first p-type epitaxial feature, and a second contact extending through the ILD layer to electrically coupled to the second p-type epitaxial feature. A bottom surface of the first contact is lower than a bottom surface of the second contact.
    Type: Application
    Filed: June 2, 2022
    Publication date: December 7, 2023
    Inventor: Shahaji B. More
  • Patent number: 11837507
    Abstract: A semiconductor device and a method of forming the same are provided. A method includes forming a sacrificial gate over an active region of a substrate. The sacrificial gate is removed to form an opening. A gate dielectric layer is formed on sidewalls and a bottom of the opening. A first work function layer is formed over the gate dielectric layer in the opening. A first protective layer is formed over the first work function layer in the opening. A first etch process is performed to widen an upper portion of the opening. The opening is filled with a conductive material.
    Type: Grant
    Filed: July 11, 2022
    Date of Patent: December 5, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shahaji B. More, Chandrashekhar Prakash Savant, Chun Hsiung Tsai
  • Publication number: 20230387246
    Abstract: A device includes a first gate region having a first gate length; a first spacer on a sidewall of the first gate region; a semiconductor layer over the first gate region; a second gate region over the semiconductor layer, wherein the second gate region has a second gate length equal to the first gate length; and a second spacer on a sidewall of second gate region, wherein the second spacer is wider than the first spacer.
    Type: Application
    Filed: August 9, 2023
    Publication date: November 30, 2023
    Inventors: Shahaji B. More, Cheng-Han Lee, Shih-Chieh Chang
  • Publication number: 20230387126
    Abstract: An embodiment device includes: an isolation region on a substrate; a first fin extending above a top surface of the isolation region; a gate structure on the first fin; and an epitaxial source/drain region adjacent the gate structure, the epitaxial source/drain region having a first main portion and a first projecting portion, the first main portion disposed in the first fin, the first projecting portion disposed on a first sidewall of the first fin and beneath the top surface of the isolation region.
    Type: Application
    Filed: August 4, 2023
    Publication date: November 30, 2023
    Inventor: Shahaji B. More
  • Publication number: 20230386924
    Abstract: A method includes forming a first fin-group having has a plurality of semiconductor fins, and a second fin-group. The plurality of semiconductor fins include a first semiconductor fin, which is farthest from the second fin-group among the first fin-group, a second semiconductor fin, and a third semiconductor fin, which is closest to the second fin-group among the first fin-group. The method further includes performing an epitaxy process to form an epitaxy region based on the plurality of semiconductor fins. The epitaxy region includes a first portion and a second portion. The first portion is in middle between the first semiconductor fin and the second semiconductor fin. The first portion has a first top surface. The second portion is in middle between the second semiconductor fin and the third semiconductor fin. The second portion has a second top surface lower than the first top surface.
    Type: Application
    Filed: July 28, 2023
    Publication date: November 30, 2023
    Inventor: Shahaji B. More
  • Publication number: 20230387267
    Abstract: Methods are disclosed for forming a multi-layer structure including highly controlled diffusion interfaces between alternating layers of different semiconductor materials. According to embodiments, during a deposition of semiconductor layers, the process is controlled to remain at low temperatures such that an inter-diffusion rate between the materials of the deposited layers is managed to provide diffusion interfaces with abrupt Si/SiGe interfaces. The highly controlled interfaces and first and second layers provide a multi-layer structure with improved etching selectivity. In an embodiment, a gate all-around (GAA) transistor is formed with horizontal nanowires (NWs) from the multi-layer structure with improved etching selectivity. In embodiments, horizontal NWs of a GAA transistor may be formed with substantially the same size diameters and silicon germanium (SiGe) NWs may be formed with “all-in-one” silicon (Si) caps.
    Type: Application
    Filed: August 9, 2023
    Publication date: November 30, 2023
    Inventors: Shahaji B. More, Shih-Chieh Chang