Patents by Inventor Shahaji B. More

Shahaji B. More has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11830772
    Abstract: A method includes forming a first fin-group having has a plurality of semiconductor fins, and a second fin-group. The plurality of semiconductor fins include a first semiconductor fin, which is farthest from the second fin-group among the first fin-group, a second semiconductor fin, and a third semiconductor fin, which is closest to the second fin-group among the first fin-group. The method further includes performing an epitaxy process to form an epitaxy region based on the plurality of semiconductor fins. The epitaxy region includes a first portion and a second portion. The first portion is in middle between the first semiconductor fin and the second semiconductor fin. The first portion has a first top surface. The second portion is in middle between the second semiconductor fin and the third semiconductor fin. The second portion has a second top surface lower than the first top surface.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: November 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventor: Shahaji B. More
  • Patent number: 11830721
    Abstract: An embodiment device includes: an isolation region on a substrate; a first fin extending above a top surface of the isolation region; a gate structure on the first fin; and an epitaxial source/drain region adjacent the gate structure, the epitaxial source/drain region having a first main portion and a first projecting portion, the first main portion disposed in the first fin, the first projecting portion disposed on a first sidewall of the first fin and beneath the top surface of the isolation region.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: November 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventor: Shahaji B. More
  • Patent number: 11830912
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The structure includes a source/drain epitaxial feature having a first semiconductor material, a first semiconductor layer having a first doped region and a first undoped region adjacent the first doped region, and the first doped region is in contact with the first semiconductor material. The structure further includes a second semiconductor layer disposed over the first semiconductor layer, and the second semiconductor layer includes a second doped region and a second undoped region adjacent the second doped region. The second doped region is in contact with the first semiconductor material. The structure further includes a gate electrode layer surrounding at least the first undoped region and the second undoped region.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: November 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Shahaji B. More
  • Publication number: 20230377977
    Abstract: An integrated circuit includes a first nanostructure transistor and a second nanostructure transistor. When forming the integrated circuit, an inter-sheet fill layer is deposited between semiconductor nanostructures of the second nanostructure transistor. A first gate metal layer is deposited between semiconductor nanostructures of the first nanostructure transistor while the inter-sheet filler layer is between the semiconductor nanostructures of the second nanostructure transistor. The inter-sheet filler layer is utilized to ensure that the first gate metal is not deposited between the semiconductor nanostructures of the second nanostructure transistor.
    Type: Application
    Filed: July 28, 2023
    Publication date: November 23, 2023
    Inventors: Shahaji B. MORE, Chandrashekhar Prakash SAVANT
  • Publication number: 20230378329
    Abstract: The present disclosure describes method to form a semiconductor device having a gate dielectric layer with controlled doping. The method includes forming a gate dielectric layer on a fin structure, forming a diffusion barrier layer on the gate dielectric layer, and forming a dopant source layer on the diffusion barrier layer. The gate dielectric layer includes an interfacial layer on the fin structure and a high-k dielectric layer on the interfacial layer. A dopant of the dopant source layer diffuses into the gate dielectric layer. The method further includes doping a portion of the interfacial layer with the dopant and removing the dopant source layer. The portion of the interfacial layer is adjacent to the high-k dielectric layer.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 23, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shahaji B. MORE, Chandrashekhar Prakash SAVANT
  • Publication number: 20230377988
    Abstract: A method includes etching a first and a second semiconductor fin to form a first and a second recesses, epitaxially growing an n-type source/drain region comprising a first portion and a second portion from the first and the second recesses, and a first middle portion in between and having a concave top surface. A first contact opening is formed extending into the n-type source/drain region and having a first V-shaped bottom. The method further includes etching a third and a fourth semiconductor fin to form a third and a fourth recesses, and forming a p-type source/drain region including a third portion and a third portion grown from the third and the fourth recesses, and a second middle portion in between and having a convex top surface. A second contact opening is formed and has a second V-shaped bottom, with a tip of the second V-shaped bottom being downwardly pointing.
    Type: Application
    Filed: August 1, 2023
    Publication date: November 23, 2023
    Inventor: Shahaji B. More
  • Publication number: 20230378316
    Abstract: In method of manufacturing a semiconductor device, a source/drain epitaxial layer is formed, one or more dielectric layers are formed over the source/drain epitaxial layer, an opening is formed in the one or more dielectric layers to expose the source/drain epitaxial layer, a first silicide layer is formed on the exposed source/drain epitaxial layer, a second silicide layer different from the first silicide layer is formed on the first silicide layer, and a source/drain contact is formed over the second silicide layer.
    Type: Application
    Filed: August 8, 2023
    Publication date: November 23, 2023
    Inventors: Cheng-Wei CHANG, Shahaji B. MORE, Yi-Ying LIU, Yueh-Ching PAI
  • Publication number: 20230377991
    Abstract: A method for forming a semiconductor device includes patterning a substrate to form a strip including a first semiconductor material, forming an isolation region along a sidewall of the strip, an upper portion of the strip extending above the isolation region, forming a dummy structure along sidewalls and a top surface of the upper portion of the strip, performing a first etching process on an exposed portion of the upper portion of the strip to form a first recess, the exposed portion of the strip being exposed by the dummy structure, after performing the first etching process, reshaping the first recess to have a V-shaped bottom surface using a second etching process, wherein the second etching process is selective to first crystalline planes having a first orientation relative to second crystalline planes having a second orientation, and epitaxially growing a source/drain region in the reshaped first recess.
    Type: Application
    Filed: August 8, 2023
    Publication date: November 23, 2023
    Inventors: Chien Lin, Kun-Yu Lee, Shahaji B. More, Cheng-Han Lee, Shih-Chieh Chang
  • Publication number: 20230378269
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The structure includes a source/drain epitaxial feature having a first semiconductor material, a first semiconductor layer having a first doped region and a first undoped region adjacent the first doped region, and the first doped region is in contact with the first semiconductor material. The structure further includes a second semiconductor layer disposed over the first semiconductor layer, and the second semiconductor layer includes a second doped region and a second undoped region adjacent the second doped region. The second doped region is in contact with the first semiconductor material. The structure further includes a gate electrode layer surrounding at least the first undoped region and the second undoped region.
    Type: Application
    Filed: August 2, 2023
    Publication date: November 23, 2023
    Inventor: Shahaji B. MORE
  • Publication number: 20230378362
    Abstract: A FinFET device and a method of forming the same are provided. The method includes forming semiconductor strips over a substrate. Isolation regions are formed over the substrate and between adjacent semiconductor strips. A first recess process is performed on the isolation regions to expose first portions of the semiconductor strips. The first portions of the semiconductor strips are reshaped to form reshaped first portions of the semiconductor strips. A second recess process is performed on the isolation regions to expose second portions of the semiconductor strips below the reshaped first portions of the semiconductor strips. The second portions of the semiconductor strips are reshaped to form reshaped second portions of the semiconductor strips. The reshaped first portions of the semiconductor strips and the reshaped second portions of the semiconductor strips form fins. The fins extend away from topmost surfaces of the isolation regions.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 23, 2023
    Inventors: Shahaji B. More, Shih-Chieh Chang
  • Publication number: 20230377995
    Abstract: A semiconductor device and a method of forming the same are provided. A method includes forming a sacrificial gate over an active region of a substrate. The sacrificial gate is removed to form an opening. A gate dielectric layer is formed on sidewalls and a bottom of the opening. A first work function layer is formed over the gate dielectric layer in the opening. A first protective layer is formed over the first work function layer in the opening. A first etch process is performed to widen an upper portion of the opening. The opening is filled with a conductive material.
    Type: Application
    Filed: August 8, 2023
    Publication date: November 23, 2023
    Inventors: Shahaji B. More, Chandrashekhar Prakash Savant, Chun Hsiung Tsai
  • Publication number: 20230378359
    Abstract: In certain embodiments, a semiconductor device includes a substrate having an n-doped well feature and an epitaxial silicon germanium fin formed over the n-doped well feature. The epitaxial silicon germanium fin has a lower part and an upper part. The lower part has a lower germanium content than the upper part. A channel is formed from the epitaxial silicon germanium fin. A gate is formed over the epitaxial silicon germanium fin. A doped source-drain is formed proximate the channel.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 23, 2023
    Inventors: Shahaji B. More, Huai-Tei Yang, Shih-Chieh Chang, Shu Kuan, Cheng-Han Lee
  • Publication number: 20230377979
    Abstract: A method includes forming a semiconductor fin, forming a gate stack on the semiconductor fin, and a gate spacer on a sidewall of the gate stack. The method further includes recessing the semiconductor fin to form a recess, performing a first epitaxy process to grow a first epitaxy semiconductor layer in the recess, wherein the first epitaxy semiconductor layer, and performing a second epitaxy process to grow an embedded stressor extending into the recess. The embedded stressor has a top portion higher than a top surface of the semiconductor fin, with the top portion having a first sidewall contacting a second sidewall of the gate spacer, and with the sidewall having a bottom end level with the top surface of the semiconductor fin. The embedded spacer has a bottom portion lower than the top surface of the semiconductor fin.
    Type: Application
    Filed: August 6, 2023
    Publication date: November 23, 2023
    Inventor: Shahaji B. More
  • Publication number: 20230378357
    Abstract: In a method of manufacturing a semiconductor device, first and second fin structures are formed over a substrate, an isolation insulating layer is formed over the substrate, a gate structure is formed over channel regions of the first and second fin structures, source/drain regions of the first and second fin structure are recessed, and an epitaxial source/drain structure is formed over the recessed first and second fin structures. The epitaxial source/drain structure is a merged structure having a merger point, and a height of a bottom of the merger point from an upper surface of the isolation insulating layer is 50% or more of a height of the channel regions of the first and second fin structures from the upper surface of the isolation insulating layer.
    Type: Application
    Filed: July 28, 2023
    Publication date: November 23, 2023
    Inventors: Shahaji B. MORE, Chandrashekhar Prakash SAVANT
  • Publication number: 20230369395
    Abstract: Nanostructure transistors are formed in a manner that may reduce the likelihood of source/drain region merging in the nanostructure transistors. In a top-down view of a nanostructure transistor described herein, source/drain regions on opposing sides of a nanostructure channel of the nanostructure transistor are staggered such that the distance between the source/drain regions is increased. This reduces the likelihood of the source/drain regions merging, which reduces the likelihood of failures and/or other defects forming in the nanostructure transistor. Accordingly, staggering the source/drain regions, as described herein, may facilitate the miniaturization of semiconductor devices that include nanostructure transistors while maintaining and/or increasing the semiconductor device yield of the semiconductor devices.
    Type: Application
    Filed: July 21, 2022
    Publication date: November 16, 2023
    Inventors: Cheng-Wei CHANG, Shahaji B. MORE, Lun-Kuang TAN, Chi-Yu CHOU, Yueh-Ching PAI
  • Publication number: 20230369451
    Abstract: A semiconductor structure includes a substrate, a semiconductor fin extending from the substrate, and a silicon germanium (SiGe) epitaxial feature disposed over the semiconductor fin. A gallium-implanted layer is disposed over a top surface of the SiGe epitaxial feature, and a silicide feature is disposed over and in contact with the gallium-implanted layer.
    Type: Application
    Filed: July 24, 2023
    Publication date: November 16, 2023
    Inventors: Shahaji B. More, Chun Hsiung Tsai, Shih-Chieh Chang, Kuo-Feng Yu, Cheng-Yi Peng
  • Patent number: 11817492
    Abstract: Methods are disclosed for forming a multi-layer structure including highly controlled diffusion interfaces between alternating layers of different semiconductor materials. According to embodiments, during a deposition of semiconductor layers, the process is controlled to remain at low temperatures such that an inter-diffusion rate between the materials of the deposited layers is managed to provide diffusion interfaces with abrupt Si/SiGe interfaces. The highly controlled interfaces and first and second layers provide a multi-layer structure with improved etching selectivity. In an embodiment, a gate all-around (GAA) transistor is formed with horizontal nanowires (NWs) from the multi-layer structure with improved etching selectivity. In embodiments, horizontal NWs of a GAA transistor may be formed with substantially the same size diameters and silicon germanium (SiGe) NWs may be formed with “all-in-one” silicon (Si) caps.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: November 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shahaji B. More, Shih-Chieh Chang
  • Patent number: 11817500
    Abstract: In a method of manufacturing a semiconductor device, first and second fin structures are formed over a substrate, an isolation insulating layer is formed over the substrate, a gate structure is formed over channel regions of the first and second fin structures, source/drain regions of the first and second fin structure are recessed, and an epitaxial source/drain structure is formed over the recessed first and second fin structures. The epitaxial source/drain structure is a merged structure having a merger point, and a height of a bottom of the merger point from an upper surface of the isolation insulating layer is 50% or more of a height of the channel regions of the first and second fin structures from the upper surface of the isolation insulating layer.
    Type: Grant
    Filed: August 10, 2022
    Date of Patent: November 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shahaji B. More, Chandrashekhar Prakash Savant
  • Patent number: 11817499
    Abstract: In certain embodiments, a semiconductor device includes a substrate having an n-doped well feature and an epitaxial silicon germanium fin formed over the n-doped well feature. The epitaxial silicon germanium fin has a lower part and an upper part. The lower part has a lower germanium content than the upper part. A channel is formed from the epitaxial silicon germanium fin. A gate is formed over the epitaxial silicon germanium fin. A doped source-drain is formed proximate the channel.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: November 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shahaji B. More, Huai-Tei Yang, Shih-Chieh Chang, Shu Kuan, Cheng-Han Lee
  • Publication number: 20230352564
    Abstract: Some implementations described herein provide a nanostructure transistor including inner spacers between a gate structure and a source/drain region. The inner spacers, formed in cavities at end regions of sacrificial nanosheets during fabrication of the nanostructure transistor, include concave-regions that face the source/drain region. Formation techniques include forming the sacrificial nanosheets and inner spacers to include certain geometric and/or dimensional properties, such that a likelihood of defects and/or voids within the inner spacers and/or the gate structure are reduced.
    Type: Application
    Filed: April 28, 2022
    Publication date: November 2, 2023
    Inventors: Cheng-Wei CHANG, Shahaji B. MORE, Chi-Yu CHOU, Chun Chieh WANG, Yueh-Ching PAI