Patents by Inventor Shawna M. Liff

Shawna M. Liff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220102305
    Abstract: Disclosed herein are structures and techniques related to singulation of microelectronic components with direct bonding interfaces. For example, in some embodiments, a microelectronic component may include: a surface, wherein conductive contacts are at the surface; a trench at a perimeter of the surface; and a burr in the trench.
    Type: Application
    Filed: September 25, 2020
    Publication date: March 31, 2022
    Applicant: Intel Corporation
    Inventors: Bhaskar Jyoti Krishnatreya, Nagatoshi Tsunoda, Shawna M. Liff, Sairam Agraharam
  • Publication number: 20220093547
    Abstract: Disclosed herein are microelectronic assemblies including microelectronic components that are coupled together by direct bonding, as well as related structures and techniques. For example, in some embodiments, a microelectronic assembly may include a first microelectronic component and a second microelectronic component coupled to the first microelectronic component by a direct bonding region, wherein the direct bonding region includes at least part of an inductor.
    Type: Application
    Filed: September 18, 2020
    Publication date: March 24, 2022
    Applicant: Intel Corporation
    Inventors: Adel A. Elsherbini, Zhiguo Qian, Gerald S. Pasdast, Mohammad Enamul Kabir, Han Wui Then, Kimin Jun, Kevin P. O'Brien, Johanna M. Swan, Shawna M. Liff, Aleksandar Aleksov, Feras Eid
  • Publication number: 20220093546
    Abstract: Disclosed herein are microelectronic assemblies including microelectronic components that are coupled together by direct bonding, as well as related structures and techniques. For example, in some embodiments, a microelectronic assembly may include a first microelectronic component and a second microelectronic component coupled to the first microelectronic component by a direct bonding region, wherein the direct bonding region includes at least part of an inductor.
    Type: Application
    Filed: September 18, 2020
    Publication date: March 24, 2022
    Applicant: Intel Corporation
    Inventors: Adel A. Elsherbini, Krishna Bharath, Kevin P. O'Brien, Kimin Jun, Han Wui Then, Mohammad Enamul Kabir, Gerald S. Pasdast, Feras Eid, Aleksandar Aleksov, Johanna M. Swan, Shawna M. Liff
  • Publication number: 20220093725
    Abstract: Disclosed herein are capacitors and resistors at direct bonding interfaces in microelectronic assemblies, as well as related structures and techniques. For example, in some embodiments, a microelectronic assembly may include a first microelectronic component and a second microelectronic component, wherein a direct bonding interface of the second microelectronic component is direct bonded to a direct bonding interface of the first microelectronic component, the microelectronic assembly includes a sensor, the sensor includes a first sensor plate and a second sensor plate, the first sensor plate is at the direct bonding interface of the first microelectronic component, and the second sensor plate is at the direct bonding interface of the second microelectronic component.
    Type: Application
    Filed: September 18, 2020
    Publication date: March 24, 2022
    Applicant: Intel Corporation
    Inventors: Adel A. Elsherbini, Mohammad Enamul Kabir, Zhiguo Qian, Gerald S. Pasdast, Kimin Jun, Shawna M. Liff, Johanna M. Swan, Aleksandar Aleksov, Feras Eid
  • Publication number: 20220093517
    Abstract: Disclosed herein are microelectronic assemblies including microelectronic components that are coupled together by direct bonding, as well as related structures and techniques. For example, in some embodiments, a microelectronic assembly may include an interposer, including an organic dielectric material, and a microelectronic component coupled to the interposer by direct bonding.
    Type: Application
    Filed: September 18, 2020
    Publication date: March 24, 2022
    Applicant: Intel Corporation
    Inventors: Aleksandar Aleksov, Adel A. Elsherbini, Shawna M. Liff, Johanna M. Swan, Feras Eid, Randy B. Osborne, Van H. Le
  • Publication number: 20220093492
    Abstract: Disclosed herein are microelectronic assemblies including direct bonding, as well as related structures and techniques. For example, in some embodiments, a microelectronic assembly may include a first microelectronic component and a second microelectronic component coupled to the first microelectronic component by a direct bonding region, wherein the direct bonding region includes a first subregion and a second subregion, and the first subregion has a greater metal density than the second subregion. In some embodiments, a microelectronic assembly may include a first microelectronic component and a second microelectronic component coupled to the first microelectronic component by a direct bonding region, wherein the direct bonding region includes a first metal contact and a second metal contact, the first metal contact has a larger area than the second metal contact, and the first metal contact is electrically coupled to a power/ground plane of the first microelectronic component.
    Type: Application
    Filed: September 18, 2020
    Publication date: March 24, 2022
    Applicant: Intel Corporation
    Inventors: Adel A. Elsherbini, Krishna Bharath, Han Wui Then, Kimin Jun, Aleksandar Aleksov, Mohammad Enamul Kabir, Shawna M. Liff, Johanna M. Swan, Feras Eid
  • Publication number: 20220093561
    Abstract: Disclosed herein are microelectronic assemblies including direct bonding, as well as related structures and techniques. For example, in some embodiments, a microelectronic assembly may include a first microelectronic component and a second microelectronic component coupled to the first microelectronic component by a direct bonding region, wherein the direct bonding region includes a first subregion and a second subregion, and the first subregion has a greater metal density than the second subregion. In some embodiments, a microelectronic assembly may include a first microelectronic component and a second microelectronic component coupled to the first microelectronic component by a direct bonding region, wherein the direct bonding region includes a first metal contact and a second metal contact, the first metal contact has a larger area than the second metal contact, and the first metal contact is electrically coupled to a power/ground plane of the first microelectronic component.
    Type: Application
    Filed: September 18, 2020
    Publication date: March 24, 2022
    Applicant: Intel Corporation
    Inventors: Feras Eid, Adel A. Elsherbini, Aleksandar Aleksov, Shawna M. Liff, Johanna M. Swan
  • Publication number: 20220051987
    Abstract: Microelectronic assemblies, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include a package substrate, a first die coupled to the package substrate with first interconnects, and a second die coupled to the first die with second interconnects, wherein the second die is coupled to the package substrate with third interconnects, a communication network is at least partially included in the first die and at least partially included in the second die, and the communication network includes a communication pathway between the first die and the second die.
    Type: Application
    Filed: October 29, 2021
    Publication date: February 17, 2022
    Applicant: Intel Corporation
    Inventors: Adel A. Elsherbini, Amr Elshazly, Arun Chandrasekhar, Shawna M. Liff, Johanna M. Swan
  • Patent number: 11227859
    Abstract: A device package and a method of forming the device package are described. The device package includes one or more dies disposed on a first substrate. The device packages further includes one or more interconnects vertically disposed on the first substrate, and a mold layer disposed over and around the first die, the one or more interconnects, and the first substrate. The device package has a second die disposed on a second substrate, wherein the first substrate is electrically coupled to the second substrate with the one or more interconnects, and wherein the one or more interconnects are directly disposed on at least one of a top surface of the first substrate and a bottom surface of the second substrate without an adhesive layer. The device package may include one or more interconnects having one or more different thicknesses or heights at different locations on the first substrate.
    Type: Grant
    Filed: September 30, 2017
    Date of Patent: January 18, 2022
    Assignee: Intel Corporation
    Inventors: Feras Eid, Johanna M. Swan, Shawna M. Liff
  • Patent number: 11223524
    Abstract: Embodiments of the invention include a physiological sensor system. According to an embodiment the sensor system may include a package substrate, a plurality of sensors formed on the substrate, a second electrical component, and an encryption bank formed along a data transmission path between the plurality of sensors and the second electrical component. In an embodiment the encryption bank may include a plurality of portions that each have one or more switches integrated into the package substrate. In an embodiment each sensor transmits data to the second electrical component along different portions of the encryption bank. In some embodiments, the switches may be piezoelectrically actuated. In other embodiments the switches may be actuated by thermal expansion. Additional embodiments may include tri- or bi-stable mechanical switches.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: January 11, 2022
    Assignee: Intel Corporation
    Inventors: Shawna M. Liff, Adel A. Elsherbini, Sasha N. Oster, Feras Eid, Georgios C. Dogiamis, Thomas L. Sounart, Johanna M. Swan
  • Patent number: 11217535
    Abstract: Microelectronic assemblies, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include a package substrate, a first die coupled to the package substrate with first interconnects, and a second die coupled to the first die with second interconnects, wherein the second die is coupled to the package substrate with third interconnects, a communication network is at least partially included in the first die and at least partially included in the second die, and the communication network includes a communication pathway between the first die and the second die.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: January 4, 2022
    Assignee: Intel Corporation
    Inventors: Adel A. Elsherbini, Amr Elshazly, Arun Chandrasekhar, Shawna M. Liff, Johanna M. Swan
  • Publication number: 20210376437
    Abstract: A method of forming a waveguide comprises forming an elongate waveguide core including a dielectric material; and arranging a conductive sheet around an outside surface of the dielectric core to produce a conductive layer around the waveguide core.
    Type: Application
    Filed: August 16, 2021
    Publication date: December 2, 2021
    Inventors: Aleksandar Aleksov, Georgios C. Dogiamis, Telesphor Kamgaing, Sasha N. Oster, Adel A. Elsherbini, Shawna M. Liff, Johanna M. Swan, Brandon M. Rawlings, Richard J. Dischler
  • Publication number: 20210375719
    Abstract: A semiconductor device that has a semiconductor die coupled to a substrate. A mold compound encapsulates the semiconductor die, and at least one thermal conductive material section extends from adjacent the semiconductor die through the mold compound. The at least one conductive material section thus conveys heat from the semiconductor die through the mold compound.
    Type: Application
    Filed: August 11, 2021
    Publication date: December 2, 2021
    Inventors: Feras Eid, Shrenik Kothari, Chandra M. Jha, Johanna M. Swan, Michael J. Baker, Shawna M. Liff, Thomas L. Sounart, Betsegaw K. Gebrehiwot, Shankar Devasenathipathy, Taylor Gaines, Digvijay Ashokkumar Raorane
  • Publication number: 20210366862
    Abstract: An electronic package and method includes a substrate including a plurality of pads on a major surface. An electronic component including a plurality of pads on a major surface facing the major surface of the substrate. A stud bump electrically couples one of the plurality of pads of the substrate to one of the plurality of pads of the electronic component.
    Type: Application
    Filed: August 3, 2021
    Publication date: November 25, 2021
    Inventors: Zhaozhi Li, Sanka Ganesan, Debendra Mallik, Gregory Perry, Kuan H. Lu, Omkar Karhade, Shawna M. Liff
  • Patent number: 11127706
    Abstract: An electronic package and method includes a substrate including a plurality of pads on a major surface. An electronic component including a plurality of pads on a major surface facing the major surface of the substrate. A stud bump electrically couples one of the plurality of pads of the substrate to one of the plurality of pads of the electronic component.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: September 21, 2021
    Assignee: Intel Corporation
    Inventors: Zhaozhi Li, Sanka Ganesan, Debendra Mallik, Gregory Perry, Kuan H. Lu, Omkar Karhade, Shawna M. Liff
  • Patent number: 11095012
    Abstract: A method of forming a waveguide comprises forming an elongate waveguide core including a dielectric material; and arranging a conductive sheet around an outside surface of the dielectric core to produce a conductive layer around the waveguide core.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: August 17, 2021
    Assignee: Intel Corporation
    Inventors: Aleksandar Aleksov, Georgios C. Dogiamis, Telesphor Kamgaing, Sasha N. Oster, Adel A. Elsherbini, Shawna M. Liff, Johanna M. Swan, Brandon M. Rawlings, Richard J. Dischler
  • Patent number: 11075166
    Abstract: A microelectronic structure includes a microelectronic substrate having a first surface and a cavity extending into the substrate from the microelectronic substrate first surface, a first microelectronic device and a second microelectronic device attached to the microelectronic substrate first surface, and a microelectronic bridge disposed within the microelectronic substrate cavity and attached to the first microelectronic device and to the second microelectronic device. In one embodiment, the microelectronic structure may include a reconstituted wafer formed from the first microelectronic device and the second microelectronic device. In another embodiment, a flux material may extend between the first microelectronic device and the microelectronic bridge and between the second microelectronic device and the microelectronic bridge.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: July 27, 2021
    Assignee: Intel Corporation
    Inventors: Eric J. Li, Timothy A. Gosselin, Yoshihiro Tomita, Shawna M. Liff, Amram Eitan, Mark Saltas
  • Publication number: 20210225807
    Abstract: An embedded silicon bridge system including tall interconnect via pillars is part of a system in package device. The tall via pillars may span a Z-height distance to a subsequent bond pad from a bond pad that is part of an organic substrate that houses the embedded silicon bridge.
    Type: Application
    Filed: April 5, 2021
    Publication date: July 22, 2021
    Inventors: Adel A. ELSHERBINI, Henning BRAUNISCH, Javier SOTO GONZALEZ, Shawna M. LIFF
  • Publication number: 20210193583
    Abstract: Various embodiments disclosed relate to a semiconductor package. The present semiconductor package includes a substrate. The substrate is formed from alternating conducting layers and dielectric layers. A first active electronic component is disposed on an external surface of the substrate, and a second active electronic component is at least partially embedded within the substrate. A first interconnect region is formed from a plurality of interconnects between the first active electronic component and the second active electronic component. Between the first active electronic component and the substrate a second interconnect region is formed from a plurality of interconnects. Additionally, a third interconnect region is formed from a plurality of interconnects between the second active electronic component and the substrate.
    Type: Application
    Filed: March 4, 2021
    Publication date: June 24, 2021
    Inventors: Adel A. ELSHERBINI, Johanna M. SWAN, Shawna M. LIFF, Henning BRAUNISCH, Krishna BHARATH, Javier SOTO GONZALEZ, Javier A. FALCON
  • Publication number: 20210193519
    Abstract: Disclosed herein are inorganic dies with organic interconnect layers and related structures, devices, and methods. In some embodiments, an integrated circuit (IC) structure may include an inorganic die and one or more organic interconnect layers on the inorganic die, wherein the organic interconnect layers include an organic dielectric.
    Type: Application
    Filed: December 19, 2019
    Publication date: June 24, 2021
    Applicant: INTEL CORPORATION
    Inventors: Aleksandar Aleksov, Telesphor Kamgaing, Georgios Dogiamis, Feras Eid, Johanna M. Swan, Shawna M. Liff