Patents by Inventor Shawna M. Liff

Shawna M. Liff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10845552
    Abstract: An optoelectronic apparatus is presented. In embodiments, the apparatus may include a package including a substrate with a first side and a second side opposite the first side, wherein the first side comprises a ball grid array (BGA) field. The apparatus may further include one or more integrated circuits (ICs) disposed on the first side of the substrate, inside the BGA field, that thermally interface with a printed circuit board (PCB), to which the package is to be coupled, one or more optical ICs coupled to the second side and communicatively coupled with the one or more ICs via interconnects provided in the substrate, wherein at least one of the optical ICs is at least partially covered by an integrated heat spreader (IHS), to provide dissipation of heat produced by the at least one optical IC.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: November 24, 2020
    Assignee: Intel Corporation
    Inventors: Shawna M. Liff, Henning Braunisch, Timothy A. Gosselin, Prasanna Raghavan, Yikang Deng, Zhiguo Qian
  • Publication number: 20200364600
    Abstract: Quantum computing assemblies, and related devices and methods, are disclosed herein. For example, in some embodiments, a quantum computing assembly may include: a package substrate; a first die coupled to the package substrate; and a second die coupled to the second surface of the package substrate and coupled to the first die; wherein the first die or the second die includes quantum processing circuitry.
    Type: Application
    Filed: December 29, 2017
    Publication date: November 19, 2020
    Applicant: Intel Corporation
    Inventors: Adel A. Elsherbini, Shawna M. Liff, Jeanette M. Roberts, James S. Clarke
  • Patent number: 10840430
    Abstract: Embodiments of the invention include a sensing device that includes a base structure having a proof mass that is positioned in proximity to a cavity of an organic substrate, a piezoelectric material in contact with a first electrode of the base structure, and a second electrode in contact with the piezoelectric material. The proof mass deflects in response to application of an external force or acceleration and this deflection causes a stress in the piezoelectric material which generates a voltage differential between the first and second electrodes.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: November 17, 2020
    Assignee: Intel Corporation
    Inventors: Feras Eid, Sasha N. Oster, Georgios C. Dogiamis, Shawna M. Liff, Adel A. Elsherbini, Thomas L. Sounart, Johanna M. Swan
  • Patent number: 10816733
    Abstract: Embodiments of the invention include an optical routing device that includes an organic substrate. According to an embodiment, an array of cavities are formed into the organic substrate and an array of piezoelectrically actuated mirrors may be anchored to the organic substrate with each piezoelectrically actuated mirror extending over a cavity. In order to properly rout incoming optical signals, the optical routing device may also include a routing die mounted on the organic substrate. The routing die may be electrically coupled to each of the piezoelectrically actuated mirrors and is able to generated a voltage across the first and second electrodes of each piezoelectrically actuated mirror. Additionally, a photodetector may be electrically coupled to the routing die. According to an embodiment, an array of fiber optic cables may be optically coupled with one of the piezoelectrically actuated mirrors and optically coupled with the photodetector.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: October 27, 2020
    Assignee: Intel Corporation
    Inventors: Sasha N. Oster, Johanna M. Swan, Feras Eid, Thomas L. Sounart, Aleksandar Aleksov, Shawna M. Liff, Baris Bicen, Valluri R. Rao
  • Patent number: 10820437
    Abstract: The document discloses a stretchable packaging system for a wearable electronic device. The system includes a first electronic component and a flexible trace connected to the first electronic component. An elastomer layer having a variable thickness at least partially encapsulates the first electronic component and the flexible trace. A first region of the layer has a first thickness that is greater than a second thickness of a second region of the layer that at least partially encapsulates the trace.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: October 27, 2020
    Assignee: Intel Corporation
    Inventors: Aleksandar Aleksov, Son V. Nguyen, Rajat Goyal, David B. Lampner, Dilan Seneviratne, Albert S. Lopez, Joshua D. Heppner, Srinivas V. Pietambaram, Shawna M. Liff, Nadine L. Dabby
  • Publication number: 20200312782
    Abstract: A device package and a method of forming the device package are described. The device package includes a substrate having a ground plane and dies disposed on the substrate. The dies are electrically coupled to the substrate with solder balls or bumps surrounded by an underfill layer. The device package has a mold layer disposed over and around the dies, the underfill layer, and the substrate. The device package further includes an additively manufactured electromagnetic interference (EMI) shield layer disposed on an outer surface of the mold layer. The additively manufactured EMI shield layer is electrically coupled to the ground plane of the substrate. The outer surface of the mold layer may include a topmost surface and one or more sidewalls that are covered with the additively manufactured EMI shield layer. The additively manufactured EMI shield may include a first and second additively manufactured EMI shield layers and an additively manufactured EMI shield frame.
    Type: Application
    Filed: September 30, 2017
    Publication date: October 1, 2020
    Inventors: Feras EID, Henning BRAUNISCH, Shawna M. LIFF, Georgios C. DOGIAMIS, Johanna M. SWAN
  • Patent number: 10790231
    Abstract: A microelectronic structure includes a microelectronic substrate having a first surface and a cavity extending into the substrate from the microelectronic substrate first surface, a first microelectronic device and a second microelectronic device attached to the microelectronic substrate first surface, and a microelectronic bridge disposed within the microelectronic substrate cavity and attached to the first microelectronic device and to the second microelectronic device. In one embodiment, the microelectronic structure may include a reconstituted wafer formed from the first microelectronic device and the second microelectronic device. In another embodiment, a flux material may extend between the first microelectronic device and the microelectronic bridge and between the second microelectronic device and the microelectronic bridge.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: September 29, 2020
    Assignee: Intel Corporation
    Inventors: Eric J. Li, Timothy A. Gosselin, Yoshihiro Tomita, Shawna M. Liff, Amram Eitan, Mark Saltas
  • Publication number: 20200303611
    Abstract: A micro-light emitting diode (LED) display and a method of fabricating the same. The method includes aligning a display backplane and a source semiconductor wafer with one another. A plurality of backplane contact pads of a first width are fixed to the backplane and include first solder pads thereon with a second width smaller than the first width. The wafer includes thereon a plurality of micro-LEDs, and a plurality of micro-LED contact pads fixed to the micro-LEDs and having a third width smaller than the first width. The method includes: aligning such that at least some of the micro-LED contact pads register with corresponding first solder pads; releasing at least some of the micro-LEDs from the wafer onto corresponding first solder pads; and forming a plurality of second solder pads by melting the corresponding first solder pads.
    Type: Application
    Filed: June 8, 2020
    Publication date: September 24, 2020
    Applicant: Intel Corporation
    Inventors: Thomas L. Sounart, Khaled Ahmed, Anup Pancholi, Shawna M. Liff
  • Publication number: 20200303329
    Abstract: Embodiments may relate to a microelectronic package that includes a radio frequency (RF) chip coupled with a die by interconnects with a first pitch. The RF chip may further be coupled with a waveguide of a package substrate by interconnects with a second pitch that is different than the first pitch. The RF chip may facilitate conveyance of data to the waveguide as an electromagnetic signal with a frequency greater than approximately 20 gigahertz (GHz). Other embodiments may be described or claimed.
    Type: Application
    Filed: April 29, 2019
    Publication date: September 24, 2020
    Applicant: Intel Corporation
    Inventors: Adel A. Elsherbini, Georgios Dogiamis, Telesphor Kamgaing, Henning Braunisch, Johanna M. Swan, Shawna M. Liff, Aleksandar Aleksov
  • Publication number: 20200303822
    Abstract: In accordance with disclosed embodiments, there is an antenna package using a ball attach array to connect an antenna and base substrates of the package. One example is an RF RF module package including an RF antenna package having a stack material in between a top and a bottom antenna layer to form multiple antenna plane surfaces, a base package having alternating patterned conductive and dielectric layers to form routing through the base package, and a bond between a bottom surface of the antenna package and to a top surface of the base package.
    Type: Application
    Filed: September 29, 2017
    Publication date: September 24, 2020
    Inventors: Jimin YAO, Shawna M. LIFF, William J. LAMBERT, Zhichao ZHANG, Robert L. SANKMAN, Sri Chaitra J. CHAVALI
  • Publication number: 20200286871
    Abstract: Microelectronic assemblies, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include a photonic receiver; and a die coupled to the photonic receiver by interconnects, wherein the die comprises a device layer between a first interconnect layer of the die and a second interconnect layer of the die. In still some embodiments, a microelectronic assembly may include a photonic transmitter; and a die coupled to the photonic transmitter by interconnects, wherein the die comprises a device layer between a first interconnect layer of the die and a second interconnect layer of the die.
    Type: Application
    Filed: December 29, 2017
    Publication date: September 10, 2020
    Applicant: Intel Corporation
    Inventors: Shawna M. Liff, Adel A. Elsherbini, Johanna M. Swan
  • Publication number: 20200286834
    Abstract: Embodiments of the invention include molded modules and methods for forming molded modules. According to an embodiment the molded modules may be integrated into an electrical package. Electrical packages according to embodiments of the invention may include a die with a redistribution layer formed on at least one surface. The molded module may be mounted to the die. According to an embodiment, the molded module may include a mold layer and a plurality of components encapsulated within the mold layer. Terminals from each of the components may be substantially coplanar with a surface of the mold layer in order to allow the terminals to be electrically coupled to the redistribution layer on the die. Additional embodiments of the invention may include one or more through mold vias formed in the mold layer to provide power delivery and/or one or more faraday cages around components.
    Type: Application
    Filed: May 20, 2020
    Publication date: September 10, 2020
    Inventors: Tomita YOSHIHIRO, Eric J. LI, Shawna M. LIFF, Javier A. FALCON, Joshua D. HEPPNER
  • Publication number: 20200286745
    Abstract: Microelectronic assemblies, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include a package substrate having a first surface and an opposing second surface; and a die embedded in the package substrate, wherein the die has a first surface and an opposing second surface, the die has first conductive contacts at the first surface and second conductive contacts at the second surface, and the first conductive contacts and the second conductive contacts are electrically coupled to conductive pathways in the package substrate.
    Type: Application
    Filed: December 29, 2017
    Publication date: September 10, 2020
    Applicant: Intel Corporation
    Inventors: Adel A. Elsherbini, Shawna M. Liff, Johanna M. Swan
  • Publication number: 20200279813
    Abstract: Microelectronic assemblies, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include a first die comprising a first face and a second face; and a second die, the second die comprising a first face and a second face, wherein the second die further comprises a plurality of first conductive contacts at the first face and a plurality of second conductive contacts at the second face, and the second die is between first-level interconnect contacts of the microelectronic assembly and the first die.
    Type: Application
    Filed: December 29, 2017
    Publication date: September 3, 2020
    Applicant: Intel Corporation
    Inventors: Shawna M. Liff, Adel A. Elsherbini, Johanna M. Swan
  • Publication number: 20200279829
    Abstract: Microelectronic assemblies, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include a package substrate having a first surface and an opposing second surface; a transmitter/receiver logic (TRL) die coupled to the first surface of the package substrate; a plurality of antenna elements adjacent the second surface of the package substrate; and a transmitter/receiver chain (TRC) die, wherein the TRC die is embedded in the package substrate, and wherein the TRC die is electrically coupled to the RF die and at least one of the plurality of antenna elements via conductive pathways in the package substrate. In some embodiments, a microelectronic assembly may further include a double-sided TRC die. In some embodiments, a microelectronic assembly may further include a TRC die having an amplifier. In some embodiments, a microelectronic assembly may further include a TRL die having a modem and a phase shifter.
    Type: Application
    Filed: December 29, 2017
    Publication date: September 3, 2020
    Applicant: Intel Corporation
    Inventors: Adel A. Elsherbini, Shawna M. Liff, Johanna M. Swan
  • Publication number: 20200273839
    Abstract: Microelectronic assemblies, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include: a first die having a first surface and an opposing second surface, first conductive contacts at the first surface of the first die, and second conductive contacts at the second surface of the first die; and a second die having a first surface and an opposing second surface, and first conductive contacts at the first surface of the second die; wherein the second conductive contacts of the first die are coupled to the first conductive contacts of the second die by interconnects, the second surface of the first die is between the first surface of the first die and the first surface of the second die, and a footprint of the first die is smaller than and contained within a footprint of the second die.
    Type: Application
    Filed: December 29, 2017
    Publication date: August 27, 2020
    Inventors: Adel A. ELSHERBINI, Henning BRAUNISCH, Aleksandar ALEKSOV, Shawna M. LIFF, Johanna M. SWAN, Patrick MORROW, Kimin JUN, Brennen MUELLER, Paul B. FISCHER
  • Publication number: 20200273840
    Abstract: Microelectronic assemblies, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include a package substrate, a first die coupled to the package substrate with first interconnects, and a second die coupled to the first die with second interconnects, wherein the second die is coupled to the package substrate with third interconnects, a communication network is at least partially included in the first die and at least partially included in the second die, and the communication network includes a communication pathway between the first die and the second die.
    Type: Application
    Filed: December 29, 2017
    Publication date: August 27, 2020
    Applicant: Intel Corporation
    Inventors: Adel A. Elsherbini, Amr Elshazly, Arun Chandrasekhar, Shawna M. Liff, Johanna M. Swan
  • Publication number: 20200273784
    Abstract: Ultra-thin, hyper-density semiconductor packages and techniques of forming such packages are described. An exemplary semiconductor package is formed with one or more of: (i) metal pillars having an ultra fine pitch (e.g., a pitch that is greater than or equal to 150 ?m, etc.); (ii) a large die to-package ratio (e.g., a ratio that is equal to or greater than 0.85, etc.); and (iii) a thin pitch translation interposer. Another exemplary semiconductor package is formed using coreless substrate technology, die back metallization, and low temperature solder technology for ball grid array (BGA) metallurgy. Other embodiments are described.
    Type: Application
    Filed: December 30, 2017
    Publication date: August 27, 2020
    Inventors: Debendra MALLIK, Robert L. SANKMAN, Robert NICKERSON, Mitul MODI, Sanka GANESAN, Rajasekaran SWAMINATHAN, Omkar KARHADE, Shawna M. LIFF, Amruthavalli ALUR, Sri Chaitra J. CHAVALI
  • Patent number: 10748844
    Abstract: Techniques of minimizing or eliminating stresses in silicon photonic integrated circuits (Si-PICs) and in semiconductor packages having one or more Si-PICs (Si-PIC packages) are described. An Si-PIC or an Si-PIC package includes a stress minimization solution that assists with filtering out stresses by selectively isolating photonic and/or electronic devices, by isolating components or devices in an Si-PIC or an Si-PIC package that are sources of stress, or by isolating an Si-PIC in an Si-PIC package. The stress minimization solution may include strategically placed cavities and a stage that assist with minimizing or preventing transfer of stress to one or more photonic and/or electronic devices in an Si-PIC or an Si-PIC package.
    Type: Grant
    Filed: December 30, 2017
    Date of Patent: August 18, 2020
    Assignee: Intel Corporation
    Inventors: Siddarth Kumar, Shawna M. Liff
  • Patent number: 10734358
    Abstract: Processes for configuring a plurality of independent die packages for socketing. The packages are attached to a carrier wafer with a release film. The attached plurality of independent die packages are overmolded to provide a molded multi-die package. The molded multi-die package is planarized to expose the dies, singulated, and released from the carrier wafer. The singulated, molded multi-die packaging may be picked for further processing and placed into a socket. A plurality of molded, multi-die packages may be placed in a socket and operate as a computer system. The independent die packages may each perform and same computer application function or different computer application functions, and may have the same or different dimensions. The socket may have any of a number of configurations as may be needed.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: August 4, 2020
    Assignee: Intel Corporation
    Inventors: Jonathan L. Rosch, Amruthavalli Pallavi Alur, Arun Chandrasekhar, Shawna M. Liff