Patents by Inventor Shih-Hsun Chang

Shih-Hsun Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210098376
    Abstract: Vias, along with methods for fabricating vias, are disclosed that exhibit reduced capacitance and resistance. An exemplary interconnect structure includes a first source/drain contact and a second source/drain contact disposed in a dielectric layer. The first source/drain contact physically contacts a first source/drain feature and the second source/drain contact physically contacts a second source/drain feature. A first via having a first via layer configuration, a second via having a second via layer configuration, and a third via having a third via layer configuration are disposed in the dielectric layer. The first via and the second via extend into and physically contact the first source/drain contact and the second source/drain contact, respectively. A first thickness of the first via and a second thickness of the second via are the same. The third via physically contacts a gate structure, which is disposed between the first source/drain contact and the second source/drain contact.
    Type: Application
    Filed: August 4, 2020
    Publication date: April 1, 2021
    Inventors: Shih-Che Lin, Po-Yu Huang, Chao-Hsun Wang, Kuo-Yi Chao, Mei-Yun Wang, Feng-Yu Chang, Rueijer Lin, Wei-Jung Lin, Chen-Yuan Kao
  • Patent number: 10944009
    Abstract: The present disclosure provides a semiconductor device that includes a semiconductor fin disposed over a substrate; an isolation structure at least partially surrounding the fin; an epitaxial source/drain (S/D) feature disposed over the semiconductor fin, wherein an extended portion of the epitaxial S/D feature extends over the isolation structure; and a silicide layer disposed on the epitaxial S/D feature, the silicide layer continuously surrounding the extended portion of the epitaxial S/D feature over the isolation structure.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: March 9, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Pei-Hsun Wang, Chih-Chao Chou, Shih-Cheng Chen, Jung-Hung Chang, Jui-Chien Huang, Chun-Hsiung Lin, Chih-Hao Wang
  • Publication number: 20210043161
    Abstract: A cursor image detection comparison and feedback status determination method is disclosed. The method is based on a non-invasive data-extraction system architecture, and uses an image processing unit to perform detection comparison on a cursor image shown on an operation screen outputted from a machine controller. The method includes steps of obtaining cursor foreground and background images set by a user, and selecting an algorithm to process the cursor foreground and background images to generate a cursor mask, and reading a cursor image and applying the cursor mask on the cursor image for pattern comparison, transmitting information of a comparison result and a cursor feedback status to a software control system, so as to provide a correction system to perform a cursor process program and check whether the movement of the cursor meet a position controlled by a feedback and correction system, thereby completing closed-loop control for the cursor.
    Type: Application
    Filed: August 8, 2019
    Publication date: February 11, 2021
    Inventors: Chao-Tung YANG, Wei-Hung CHEN, Shih-Hsun LIN, Wei-Jyun TU, Chun-Hong LIU, Chien-Chung LIN, Chieh-Yuan LO, Hsiao-Ling CHANG
  • Publication number: 20210018571
    Abstract: The present invention discloses a method for controlling power supplies, each of M power supply has a first end and a second end, the first end of the ith power supply is connected to the second end of the (i?1)th power supply. The method comprises the following steps. A testing procedure is performed by each of the M power supplies for determining whether the first end and the second end are connected or not. A first connection status code is set when the testing procedure determines that the first end is connected, and the second end is not connected. A second connection status code is set when the testing procedure determines that the first end and the second end are both connected. A third connection status code is set when the testing procedure determines that the second end is connected, and the first end is not connected.
    Type: Application
    Filed: July 13, 2020
    Publication date: January 21, 2021
    Inventors: Te-Lung CHEN, Chih-Cherng LU, Shu-Che CHANG, Shih-Hsun HSU, Chia-Ching TING
  • Publication number: 20210013205
    Abstract: A semiconductor device manufacturing method includes forming fins in first and second regions defined on a substrate. The fins include first fin, second fin, third fin, and fourth fin. A dielectric layer is formed over fins and a work function adjustment layer is formed over dielectric layer. A hard mask is formed covering third and fourth fins. A first conductive material layer is formed over first fin and not over second fin. A second conductive material layer is formed over first and second fins. A first metal gate electrode fill material is formed over first and second fins. The hard mask covering third and fourth fins is removed. A third conductive material layer is formed over third fin and not over fourth fin. A fourth conductive material layer is formed over third and fourth fins, and a second metal gate electrode fill material is formed over third and fourth fins.
    Type: Application
    Filed: September 28, 2020
    Publication date: January 14, 2021
    Inventors: Chia-Chun LIAO, Chun-Sheng LIANG, Shu-Hui WANG, Shih-Hsun CHANG, Yi-Jen CHEN
  • Publication number: 20200395253
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate. The semiconductor device structure includes a gate stack over the substrate, wherein the gate stack has a first portion and a second portion under the first portion, and the first portion is wider than the second portion. The semiconductor device structure includes a first spacer and a second spacer over opposite sides of the gate stack. The first spacer has a first upper portion and a first lower portion, the second spacer has a second upper portion and a second lower portion. The first spacer has a first recess, the first upper portion is between the first recess and the gate stack, the first lower portion is under the first recess, and the first recess has a first inner wall facing away from the gate stack.
    Type: Application
    Filed: August 28, 2020
    Publication date: December 17, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming-Heng TSAI, Chun-Sheng LIANG, Pei-Lin WU, Yi-Ren CHEN, Shih-Hsun CHANG
  • Patent number: 10825813
    Abstract: A semiconductor device includes first-type-channel field effect transistors (FETs) including a first first-type-channel FET including a first gate structure and a second first-type-channel FET including a second gate structure. The first first-type-channel FET has a smaller threshold voltage than the second first-type-channel FET. The first gate structure includes a first work function adjustment material (WFM) layer and the second gate structure includes a second WFM layer. At least one of thickness and material of the first and second WFM layers is different from each other.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: November 3, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shun-Jang Liao, Chia-Chun Liao, Shu-Hui Wang, Shih-Hsun Chang
  • Patent number: 10790283
    Abstract: A semiconductor device manufacturing method includes forming fins in first and second regions defined on a substrate. The fins include first fin, second fin, third fin, and fourth fin. A dielectric layer is formed over fins and a work function adjustment layer is formed over dielectric layer. A hard mask is formed covering third and fourth fins. A first conductive material layer is formed over first fin and not over second fin. A second conductive material layer is formed over first and second fins. A first metal gate electrode fill material is formed over first and second fins. The hard mask covering third and fourth fins is removed. A third conductive material layer is formed over third fin and not over fourth fin. A fourth conductive material layer is formed over third and fourth fins, and a second metal gate electrode fill material is formed over third and fourth fins.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: September 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Chun Liao, Chun-Sheng Liang, Shu-Hui Wang, Shih-Hsun Chang, Yi-Jen Chen
  • Publication number: 20200303511
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a fin structure formed over a semiconductor substrate and a gate structure formed across the fin structure. The semiconductor device structure also includes an isolation feature over a semiconductor substrate and below a portion of the gate structure and two spacer elements respectively formed over a first sidewall and a second sidewall of the gate structure. In addition, the first sidewall is opposite to the second sidewall and the two spacer elements have hydrophobic surfaces respectively facing the first sidewall and the second sidewall, and the gate structure includes a gate dielectric layer and a gate electrode layer separating the gate dielectric layer from the hydrophobic surfaces of the two spacer elements.
    Type: Application
    Filed: June 1, 2020
    Publication date: September 24, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Han TSAI, Jen-Hsiang LU, Shih-Hsun CHANG
  • Patent number: 10776558
    Abstract: A testing method includes the following operations: performing a place and route procedure according to a netlist file corresponding to a chip to generate first layout data; determining whether to replace a flip-flop circuit in the chip with a gated flip-flop circuit according to the first layout data to generate second layout data; and running a test on the chip according to the second layout data.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: September 15, 2020
    Assignee: Global Unichip (Nanjing) Ltd.
    Inventors: Shih-Hsin Chen, Te-Hsun Fu, Ming-Tung Chang
  • Patent number: 10763178
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate. The semiconductor device structure includes a gate stack over the substrate. The gate stack has a first upper portion and a first lower portion, and the first upper portion is wider than the first lower portion. The semiconductor device structure includes a spacer layer surrounding the gate stack. The spacer layer has a second upper portion and a second lower portion. The second upper portion is thinner than the second lower portion.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: September 1, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Heng Tsai, Chun-Sheng Liang, Pei-Lin Wu, Yi-Ren Chen, Shih-Hsun Chang
  • Publication number: 20200266282
    Abstract: A semiconductor structure includes a high-k metal gate structure (HKMG) disposed over a channel region of a semiconductor layer formed over a substrate, where the HKMG includes an interfacial layer disposed over the semiconductor layer, a high-k dielectric layer disposed over the interfacial layer, and a gate electrode disposed over the high-k dielectric layer, where a length of the high-k dielectric layer is greater than a length of the gate electrode and where outer edges of the interfacial layer, the high-k dielectric layer, and the gate electrode form a step profile. The semiconductor structure further includes gate spacers having sidewall portions contacting sidewalls of the gate electrode and bottom portions contacting top portions of the high-k dielectric layer and the interfacial layer, and source/drain features disposed in the semiconductor layer adjacent to the HKMG.
    Type: Application
    Filed: May 4, 2020
    Publication date: August 20, 2020
    Inventors: Jen-Hsiang Lu, Tsung-Han Tsai, Shih-Hsun Chang
  • Patent number: 10740122
    Abstract: A system module applied to the machine controller for simulating a machine operation screen based on a non-invasive data-extraction system, is disclosed. An image capture device of the system module can receive an original operation screen outputted from the machine controller, and transmit the original operation screen to the non-invasive data-extraction system and a high-speed image process unit for extraction of the information shown on the operation screen. The software control system can extract the operational information of the machine controller in real time, to create a machine operation flow for generating a simulated machine operation screen which is then outputted to a screen of the machine controller. As a result, the site working staff can be provided with operational information associated with the machine in real time, for example, the operational information includes currently executed operation screen, position of mouse cursor and pop-up window detection result.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: August 11, 2020
    Assignee: Adlink Technology Inc.
    Inventors: Chua-Hong Ng, Chao-Tung Yang, Wei-Hung Chen, Tsan-Ming Yu, Shih-Hsun Lin, Yang-Chung Tseng, Chih-Fu Hsu, Chien-Hsun Tu, Ren-Yu Wu, Chieh-Yuan Lo, Chih-Kai Shiao, Hsiao-Ling Chang, Te-Cheng Tseng, Chun-Liang Chen
  • Publication number: 20200203499
    Abstract: A semiconductor device includes a substrate, a channel layer, a barrier layer, a ferroelectric composite material layer, a gate, a source and a drain. The channel layer and the barrier layer having a recess are disposed on the substrate in sequence. The ferroelectric composite material layer including a first dielectric layer, a charge trapping layer, a first ferroelectric material layer, a second dielectric layer and a second ferroelectric material layer is disposed in the recess. The gate is disposed on the ferroelectric composite material layer. The source and the drain are disposed on the barrier layer.
    Type: Application
    Filed: March 4, 2020
    Publication date: June 25, 2020
    Inventors: Edward Yi CHANG, Shih-Chien LIU, Chung-Kai HUANG, Chia-Hsun WU, Ping-Cheng HAN, Yueh-Chin LIN, Ting-En HSIEH
  • Publication number: 20200176574
    Abstract: Vertical interconnect structures and methods of forming are provided. The vertical interconnect structures may be formed by partially filling a first opening through one or more dielectric layers with layers of conductive materials. A second opening is formed in a dielectric layer such that a depth of the first opening after partially filling with the layers of conductive materials is close to a depth of the second opening. The remaining portion of the first opening and the second opening may then be simultaneously filled.
    Type: Application
    Filed: May 10, 2019
    Publication date: June 4, 2020
    Inventors: Po-Yu Huang, Shih-Che Lin, Chao-Hsun Wang, Kuo-Yi Chao, Mei-Yun Wang, Feng-Yu Chang, Rueijer Lin, Chen-Yuan Kao
  • Patent number: 10672879
    Abstract: A method of forming a semiconductor device structure is provided. The method includes forming an isolation feature over a semiconductor substrate. The semiconductor substrate includes a fin structure over the isolation feature. Two opposing spacer elements are formed over the isolation feature and across the fin structure so as to define a gate opening. The gate opening exposes the fin structure and the isolation feature and inner sidewalls of the gate opening have carbon-containing hydrophobic surfaces. A gate structure is formed in the gate opening with the carbon-containing hydrophobic surfaces.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: June 2, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Han Tsai, Jen-Hsiang Lu, Shih-Hsun Chang
  • Publication number: 20200151299
    Abstract: A testing method includes the following operations: performing a place and route procedure according to a netlist file corresponding to a chip, in order to generate first layout data; determining whether to replace a flip-flop circuit in the chip with a gated flip-flop circuit according to the first layout data, in order to generate second layout data; and running a test on the chip according to the second layout data.
    Type: Application
    Filed: March 21, 2019
    Publication date: May 14, 2020
    Inventors: Shih-Hsin Chen, Te-Hsun Fu, Ming-Tung Chang
  • Publication number: 20200152521
    Abstract: A method includes removing a dummy gate structure formed over a first fin and a second fin, forming an interfacial layer in the first trench and the second trench, forming a first high-k dielectric layer over the interfacial layer in the first trench and the second trench, removing the first high-k dielectric layer in the second trench, forming a self-assembled monolayer over the first high-k dielectric layer in the first trench, forming a second high-k dielectric layer over the self-assembled monolayer in the first trench and over the interfacial layer in the second trench, forming a work function metal layer in the first and the second trenches, and forming a bulk conductive layer over the work function metal layer in the first and the second trenches. In some embodiments, the first high-k dielectric layer includes lanthanum and oxygen.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 14, 2020
    Inventors: Ju-Li Huang, Hsin-Che Chiang, Ju-Yuan Tzeng, Wei-Ze Xu, Yueh-Yi Chen, Shu-Hui Wang, Shih-Hsun Chang
  • Patent number: 10644125
    Abstract: A method of forming a semiconductor structure includes, providing a semiconductor layer, forming an interfacial layer over the semiconductor layer, depositing a high-k dielectric layer over the interfacial layer, forming a dummy gate electrode over the high-k dielectric layer, patterning the dummy gate electrode layer, the high-k dielectric layer, and the interfacial layer, resulting in a dummy gate electrode having a width less than a width of the high-k dielectric layer, forming spacers along sidewalls of the patterned dummy gate electrode, the high-k dielectric layer, and the interfacial layer, forming source/drain features, and replacing the dummy gate electrode with a metal gate electrode to form a high-k metal gate structure.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: May 5, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jen-Hsiang Lu, Tsung-Han Tsai, Shih-Hsun Chang
  • Publication number: 20200135641
    Abstract: Methods to form vertically conducting and laterally conducting low-cost resistor structures utilizing dual-resistivity conductive materials are provided. The dual-resistivity conductive materials are deposited in openings in a dielectric layer using a single deposition process step. A high-resistivity ?-phase of tungsten is stabilized by pre-treating portions of the dielectric material with impurities. The portions of the dielectric material in which impurities are incorporated encompass regions laterally adjacent to where high-resistivity ?-W is desired. During a subsequent tungsten deposition step the impurities may out-diffuse and get incorporated in the tungsten, thereby stabilizing the metal in the high-resistivity ?-W phase. The ?-W converts to a low-resistivity ?-phase of tungsten in the regions not pre-treated with impurities.
    Type: Application
    Filed: August 5, 2019
    Publication date: April 30, 2020
    Inventors: Jia-En Lee, Po-Yu Huang, Shih-Che Lin, Chao-Hsun Wang, Kuo-Yi Chao, Mei-Yun Wang, Feng-Yu Chang