Patents by Inventor Shih-Wei Hung
Shih-Wei Hung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12237218Abstract: A method of fabricating a contact structure includes the following steps. An opening is formed in a dielectric layer. A conductive material layer is formed within the opening and on the dielectric layer, wherein the conductive material layer includes a bottom section having a first thickness and a top section having a second thickness, the second thickness is greater than the first thickness. A first treatment is performed on the conductive material layer to form a first oxide layer on the bottom section and on the top section of the conductive material layer. A second treatment is performed to remove at least portions of the first oxide layer and at least portions of the conductive material layer, wherein after performing the second treatment, the bottom section and the top section of the conductive material layer have substantially equal thickness.Type: GrantFiled: May 6, 2022Date of Patent: February 25, 2025Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chang-Ting Chung, Shih-Wei Yeh, Kai-Chieh Yang, Yu-Ting Wen, Yu-Chen Ko, Ya-Yi Cheng, Min-Hsiu Hung, Chun-Hsien Huang, Wei-Jung Lin, Chih-Wei Chang, Ming-Hsing Tsai
-
Patent number: 12219747Abstract: SRAM designs based on GAA transistors are disclosed that provide flexibility for increasing channel widths of transistors at scaled IC technology nodes and relax limits on SRAM performance optimization imposed by FinFET-based SRAMs. GAA-based SRAM cells described have active region layouts with active regions shared by pull-down GAA transistors and pass-gate GAA transistors. A width of shared active regions that correspond with the pull-down GAA transistors are enlarged with respect to widths of the shared active regions that correspond with the pass-gate GAA transistors. A ratio of the widths is tuned to obtain ratios of pull-down transistor effective channel width to pass-gate effective channel width greater than 1, increase an on-current of pull-down GAA transistors relative to an on-current of pass-gate GAA transistors, decrease a threshold voltage of pull-down GAA transistors relative to a threshold voltage of pass-gate GAA transistors, and/or increases a ? ratio of an SRAM cell.Type: GrantFiled: August 12, 2021Date of Patent: February 4, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chia-Hao Pao, Chih-Chuan Yang, Shih-Hao Lin, Chih-Hsuan Chen, Kian-Long Lim, Chao-Yuan Chang, Feng-Ming Chang, Lien Jung Hung, Ping-Wei Wang
-
Patent number: 12216326Abstract: An optical member driving mechanism for connecting an optical member is provided, including a fixed portion and a first adhesive member. The fixed portion includes a first member and a second member, wherein the first member is fixedly connected to the second member via the first adhesive member.Type: GrantFiled: March 26, 2021Date of Patent: February 4, 2025Assignee: TDK TAIWAN CORP.Inventors: Hsiang-Chin Lin, Shou-Jen Liu, Guan-Bo Wang, Kai-Po Fan, Chan-Jung Hsu, Shao-Chung Chang, Shih-Wei Hung, Ming-Chun Hsieh, Wei-Pin Chin, Sheng-Zong Chen, Yu-Huai Liao, Sin-Hong Lin, Wei-Jhe Shen, Tzu-Yu Chang, Kun-Shih Lin, Che-Hsiang Chiu, Sin-Jhong Song
-
Patent number: 12204163Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.Type: GrantFiled: February 5, 2024Date of Patent: January 21, 2025Assignee: TDK TAIWAN CORP.Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
-
Publication number: 20240395636Abstract: The disclosure is directed to techniques in preparing an atom probe tomography (“APT”) specimen. A structure in a semiconductor device is identified as including a test object for an APT procedure. A target region is identified in the structure where an APT specimen will be obtained. The target region is analyzed to determine whether a challenging component feature exists therein. A challenging component may include a hard-to-evaporate material, a hollow region, or a material unidentifiable with respect to the test object, or other structural features that pose a challenge to a successful APT analysis. If it is determined that a challenging component exists in the target region, the challenging component is replaced with a more suitable material before the APT specimen is prepared.Type: ApplicationFiled: July 30, 2024Publication date: November 28, 2024Inventors: Shih-Wei HUNG, Jang Jung LEE
-
Publication number: 20240374458Abstract: An electric assistive device is provided. The electric assistive device includes a power wheel module, an upper control module, and a power control module. The upper control module is configured to provide a dynamic characteristic parameter. The power control module is coupled to the power wheel module and the upper control module. In response to operating the electric assistive device in an auxiliary walking mode, the power control module adaptively generates a first vehicle speed parameter according to a dynamic characteristic parameter and a force estimation parameter. The power control module generates a voltage control signal according to the first vehicle speed parameter. The power control module drives the power wheel module according to the voltage control signal.Type: ApplicationFiled: June 7, 2023Publication date: November 14, 2024Applicant: Wistron CorporationInventors: Shih Wei Hung, Cheng-Hsing Liu
-
Publication number: 20240264405Abstract: An optical element driving mechanism is provided and includes a fixed assembly, a movable assembly, a driving assembly and a stopping assembly. The fixed assembly has a main axis. The movable assembly is configured to connect an optical element, and the movable assembly is movable relative to the fixed assembly. The driving assembly is configured to drive the movable assembly to move relative to the fixed assembly. The stopping assembly is configured to limit the movement of the movable assembly relative to the fixed assembly within a range of motion.Type: ApplicationFiled: April 16, 2024Publication date: August 8, 2024Inventors: Chao-Chang HU, Liang-Ting HO, Chen-Er HSU, Yi-Liang CHAN, Fu-Lai TSENG, Fu-Yuan WU, Chen-Chi KUO, Ying-Jen WANG, Wei-Han HSIA, Yi-Hsin TSENG, Wen-Chang LIN, Chun-Chia LIAO, Shou-Jen LIU, Chao-Chun CHANG, Yi-Chieh LIN, Shang-Yu HSU, Yu-Huai LIAO, Shih-Wei HUNG, Sin-Hong LIN, Kun-Shih LIN, Yu-Cheng LIN, Wen-Yen HUANG, Wei-Jhe SHEN, Chih-Shiang WU, Sin-Jhong SONG, Che-Hsiang CHIU, Sheng-Chang LIN
-
Publication number: 20240176093Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.Type: ApplicationFiled: February 5, 2024Publication date: May 30, 2024Inventors: Chao-Chang HU, Chih-Wei WENG, Chia-Che WU, Chien-Yu KAO, Hsiao-Hsin HU, He-Ling CHANG, Chao-Hsi WANG, Chen-Hsien FAN, Che-Wei CHANG, Mao-Gen JIAN, Sung-Mao TSAI, Wei-Jhe SHEN, Yung-Ping YANG, Sin-Hong LIN, Tzu-Yu CHANG, Sin-Jhong SONG, Shang-Yu HSU, Meng-Ting LIN, Shih-Wei HUNG, Yu-Huai LIAO, Mao-Kuo HSU, Hsueh-Ju LU, Ching-Chieh HUANG, Chih-Wen CHIANG, Yu-Chiao LO, Ying-Jen WANG, Shu-Shan CHEN, Che-Hsiang CHIU
-
Patent number: 11982866Abstract: An optical element driving mechanism is provided and includes a fixed assembly, a movable assembly, a driving assembly and a stopping assembly. The fixed assembly has a main axis. The movable assembly is configured to connect an optical element, and the movable assembly is movable relative to the fixed assembly. The driving assembly is configured to drive the movable assembly to move relative to the fixed assembly. The stopping assembly is configured to limit the movement of the movable assembly relative to the fixed assembly within a range of motion.Type: GrantFiled: December 15, 2022Date of Patent: May 14, 2024Assignee: TDK TAIWAN CORP.Inventors: Chao-Chang Hu, Liang-Ting Ho, Chen-Er Hsu, Yi-Liang Chan, Fu-Lai Tseng, Fu-Yuan Wu, Chen-Chi Kuo, Ying-Jen Wang, Wei-Han Hsia, Yi-Hsin Tseng, Wen-Chang Lin, Chun-Chia Liao, Shou-Jen Liu, Chao-Chun Chang, Yi-Chieh Lin, Shang-Yu Hsu, Yu-Huai Liao, Shih-Wei Hung, Sin-Hong Lin, Kun-Shih Lin, Yu-Cheng Lin, Wen-Yen Huang, Wei-Jhe Shen, Chih-Shiang Wu, Sin-Jhong Song, Che-Hsiang Chiu, Sheng-Chang Lin
-
Patent number: 11934027Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.Type: GrantFiled: June 21, 2022Date of Patent: March 19, 2024Assignee: TDK TAIWAN CORP.Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
-
Patent number: 11841547Abstract: An optical element drive mechanism is provided. The optical element drive mechanism includes an immovable part, a movable part, and a drive assembly. The movable part is movable relative to the immovable part. The movable part holds an optical element with an optical axis. The drive assembly drives the movable part to move relative to the immovable part. At least part of the drive assembly is disposed on the immovable part.Type: GrantFiled: November 10, 2020Date of Patent: December 12, 2023Assignee: TDK TAIWAN CORP.Inventors: Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Chia-Che Wu, Mao-Gen Jian, Chih-Wei Weng
-
Patent number: 11833642Abstract: The invention relates to a power tool with an electrically controlled commutating assembly comprising: an electrically controlled commutating assembly and a control unit; the electrically controlled commutating assembly has an electromagnetic unit; the electromagnetic unit is capable of performing a change in displacement due to electromagnetic action; the control unit has a control member, the control member is capable of changing a working direction of a power tool, and displacement of the electromagnetic unit is capable of actuating the control member of the control unit to make the power tool switch the working direction.Type: GrantFiled: September 28, 2020Date of Patent: December 5, 2023Assignee: TECHWAY INDUSTRIAL CO., LTD.Inventors: Fu-Hsiang Chung, Hong Fang Chen, Wei-Ting Chen, Shih-Wei Hung, Kuo Chou Li
-
Patent number: 11837435Abstract: The disclosure is directed to techniques in preparing an atom probe tomography (“APT”) specimen. The disclosed techniques form an APT specimen or sample directly on a DUT region on a wafer. The APT specimen is formed integrally to the substrate or the support structure, e.g., a carrier, under the APT specimen. A laser patterning is conducted to form a trench in the DUT and one or more bump structures in the trench. The laser patterning is relatively coarse and forms a coarse surface texture on each of the bump structures. A low-kV gas ion milling using a dual-beam focused ion beam (“FIB”) microscopes is then conducted to shape the bump structures into APT specimen.Type: GrantFiled: August 19, 2020Date of Patent: December 5, 2023Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Shih-Wei Hung, Jang Jung Lee
-
Publication number: 20230386783Abstract: The disclosure is directed to techniques in preparing an atom probe tomography (“APT”) specimen. The disclosed techniques form an APT specimen or sample directly on a DUT region on a wafer. The APT specimen is formed integrally to the substrate or the support structure, e.g., a carrier, under the APT specimen. A laser patterning is conducted to form a trench in the DUT and one or more bump structures in the trench. The laser patterning is relatively coarse and forms a coarse surface texture on each of the bump structures. A low-kV gas ion milling using a dual-beam focused ion beam (“FIB”) microscopes is then conducted to shape the bump structures into APT specimen.Type: ApplicationFiled: August 10, 2023Publication date: November 30, 2023Inventors: Shih-Wei HUNG, Jang Jung LEE
-
Patent number: 11801587Abstract: The invention is an electric commutating ratchet tool comprising: a head; a ratchet mechanism with a rotating member and a latch member; the rotating member is capable of rotating, the latch member is capable of displacing and controlling rotation direction of the rotating member; and a commutating device with a commutating member, a magnetic driving member and a magnetic actuating unit; the commutating member is capable of displacing to abut against the latch member; the magnetic actuating unit is opposite to the magnetic driving member, either the magnetic actuating unit or the magnetic driving member is disposed on the commutating member; the magnetic actuating unit is at least one electromagnet; magnetic direction is changed through each of the electromagnets, so that the magnetic driving member is magnetically driven to change a position of the latch member.Type: GrantFiled: February 17, 2021Date of Patent: October 31, 2023Assignee: TECHWAY INDUSTRIAL CO., LTD.Inventors: Fu-Hsiang Chung, Hong Fang Chen, Shih-Wei Hung
-
Patent number: 11740428Abstract: The present disclosure provides an optical element driving mechanism, which includes a movable part, a fixed assembly, and a driving assembly. The movable part is configured to be connected to an optical element. The fixed assembly has a first opening, and the movable part is movable relative to the fixed assembly along a first axis. The driving assembly is configured to drive the movable part to move between a first position and a second position relative to the fixed assembly, so that the optical element selectively overlaps the first opening.Type: GrantFiled: March 29, 2022Date of Patent: August 29, 2023Assignee: TDK TAIWAN CORP.Inventors: Shih-Wei Hung, Sheng-Zong Chen, Ko-Lun Chao
-
Patent number: 11722020Abstract: A stator of a brushless motor has an iron core, a bobbin, and a winding assembly. The iron core has multiple stator poles mounted on an interior annular surface of a core body and spaced apart from each other. The bobbin is mounted on one of two open ends of the core body and has a substrate, at least one neutral connector mounted on an upper surface of the substrate, and at least one neutral solder pad mounted in the at least one neutral connector. The winding assembly is formed by one wire wound on multiple stator poles and the connectors. The winding assembly is electrically connected to the at least one neutral solder pad.Type: GrantFiled: April 26, 2021Date of Patent: August 8, 2023Assignee: Techway Industrial Co., Ltd.Inventors: Fu Hsiang Chung, Hong Fang Chen, Shih Wei Hung, Wei Ting Chen, Yu Chin Lin
-
Patent number: 11637027Abstract: A method of fabricating a semiconductor device includes providing a system that includes a susceptor configured to retain a semiconductor substrate, a heating element, and a reflector integrated with the heating element, where the reflector includes a surface defined by a plurality of circumferential ridges having a separation distance that varies from a top portion of the reflector to a bottom portion of the reflector. The method further includes heating the semiconductor substrate and forming an epitaxial layer on the heated semiconductor substrate, where the heating includes emitting thermal energy from the heating element and reflecting the thermal energy from the surface of the reflector onto the semiconductor substrate, where an amount of the thermal energy received by an edge of the semiconductor substrate is more than an amount of the thermal energy received by a center of the semiconductor substrate.Type: GrantFiled: July 27, 2020Date of Patent: April 25, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventor: Shih-Wei Hung
-
Publication number: 20230120771Abstract: An optical element driving mechanism is provided and includes a fixed assembly, a movable assembly, a driving assembly and a stopping assembly. The fixed assembly has a main axis. The movable assembly is configured to connect an optical element, and the movable assembly is movable relative to the fixed assembly. The driving assembly is configured to drive the movable assembly to move relative to the fixed assembly. The stopping assembly is configured to limit the movement of the movable assembly relative to the fixed assembly within a range of motion.Type: ApplicationFiled: December 15, 2022Publication date: April 20, 2023Inventors: Chao-Chang HU, Liang-Ting HO, Chen-Er HSU, Yi-Liang CHAN, Fu-Lai TSENG, Fu-Yuan WU, Chen-Chi KUO, Ying-Jen WANG, Wei-Han HSIA, Yi-Hsin TSENG, Wen-Chang LIN, Chun-Chia LIAO, Shou-Jen LIU, Chao-Chun CHANG, Yi-Chieh LIN, Shang-Yu HSU, Yu-Huai LIAO, Shih-Wei HUNG, Sin-Hong LIN, Kun-Shih LIN, Yu-Cheng LIN, Wen-Yen HUANG, Wei-Jhe SHEN, Chih-Shiang WU, Sin-Jhong SONG, Che-Hsiang CHIU, Sheng-Chang LIN
-
Patent number: 11561410Abstract: A driving mechanism for an optical element is provided, including a fixed part, a movable part and a driving assembly. The movable part is configured to connect to the optical element having the optical axis. The movable part is movable relative to the fixed part. The driving assembly is configured to drive the movable part to move relative to the fixed part.Type: GrantFiled: June 12, 2020Date of Patent: January 24, 2023Assignee: TDK TAIWAN CORP.Inventors: Sin-Hong Lin, Kun-Shih Lin, Yu-Cheng Lin, Wen-Yen Huang, Shih-Wei Hung